近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Yao, N.; Yu, L.; Fu, Z.-H.; Shen, X.; Hou, T.-Z.; Liu, X.; Gao, Y.-C.; Zhang, R.; Zhao, C.-Z.; Chen, X.; Zhang, Q. Probing the Origin of Viscosity of Liquid Electrolytes for Lithium Batteries. Angew. Chem. Int. Ed. 2023, e202305331. [doi]
Cohen, O. A.; Macdermott-Opeskin, H.; Lee, L.; Hou, T.; Fong, K. D.; Kingsbury R.; Wang, J.; Persson, K. A. SolvationAnalysis: A Python toolkit for understanding liquid solvation structure in classical molecular dynamics simulations. J. Open Source Softw. 2023, 8, 5183.
Hou, T.*; Xu, W*. Deep dive into anionic metal–organic frameworks based quasi-solid-state electrolytes. J. Energy Chem. 2023, 81, 313-320.
Hou, T.*; Chen, X.; Jiang, L.; Tang, C. Advances and Atomistic Insights of Electrolytes for Lithium-Ion Batteries and Beyond. J. Electrochem. 2022, 28, 2219007.
Hou, T.?; Xu, W.?; Pei, X.; Jiang, L.; Yaghi, O. M.; Persson, K. A. Ionic Conduction Mechanism and Design of Metal–Organic Frameworks Based Quasi-Solid-State Electrolytes. J. Am. Chem. Soc. 2022, 144, 13446-13450. (Front cover)
Spotte-Smith, E. W. C.; Kam, R. L.; Barter, D.; Xie, X.; Hou, T.; Dwaraknath, S.; Blau, S. M.; Persson, K. A. Toward a Mechanistic Model of Solid–Electrolyte Interphase Formation and Evolution in Lithium-Ion Batteries. ACS Energy Lett. 2022, 7, 1446-1453.
Hou, T.*; Fong, K. D.; Wang, J.; Persson, K. A. The solvation structure, transport properties and reduction behavior of carbonate-based electrolytes of lithium-ion batteries. Chem. Sci. 2021, 12, 14740-14751. (ChemSci Pick of the Week)
Chen, X.; Shen, X.; Hou, T.-Z.; Zhang, R.; Peng, H.-J.; Zhang, Q. Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries. Chem 2020, 6, 2242-2256.
Pekarek, R. T.; Affolter, A.; Baranowski, L. L.; Coyle, J.; Hou, T.; Sivonxay, E.; Smith, B. A.; McAuliffe, R. D.; Persson, K. A.; Key, B.; Apblett, C.; Veith, G. M.; Neale, N. R. Intrinsic chemical reactivity of solid-electrolyte interphase components in silicon–lithium alloy anode batteries probed by FTIR spectroscopy. J. Mater. Chem. A 2020, 8, 7897-7906.
Lin, S.; Fang, Z.; Hou, T.; Hsu, T. W.; So, C. H.; Yeoh, C.; Li, R.; Liu, Y.; Chan, E. M.; Chueh, Y.-L.; Tang, B.; Persson, K.; Yao, J. Tunable valleytronics with symmetry-retaining high polarization degree in SnSxSe1?x model system. Appl. Phys. Lett. 2020, 116, 061105.
Hou, T.; Yang, G.; Rajput, N. N.; Self, J.; Park, S.-W.; Nanda, J.; Persson, K. A. The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 2019, 64, 103881.
Nanda, J.; Yang, G.; Hou, T.; Voylov, D. N.; Li, X.; Ruther, R. E.; Naguib, M.; Persson, K.; Veith, G. M.; Sokolov, A. P. Unraveling the Nanoscale Heterogeneity of Solid Electrolyte Interphase Using Tip-Enhanced Raman Spectroscopy. Joule 2019, 3, 2001-2019.
Chen, X.; Chen, X.-R.; Hou, T.-Z.; Li, B.-Q.; Cheng, X.-B.; Zhang, R.; Zhang, Q. Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Sci. Adv. 2019, 5, eaau7728. ( ESI Highly Cited Paper)
Chen, X.; Hou, T.; Persson, K. A.; Zhang, Q. Combining theory and experiment in lithium–sulfur batteries: Current progress and future perspectives. Mater. Today 2019, 22, 142-158. (Inner cover, ESI Highly Cited Paper)
Hou, T.-Z.?; Xu, W.-T.?; Chen, X.?; Peng, H.-J.; Huang, J.-Q.; Zhang, Q. Lithium Bond Chemistry in Lithium–Sulfur Batteries. Angew. Chem. Int. Ed. 2017, 56, 8178-8182. (Very important paper, ESI Highly Cited Paper)
Chen, X.?; Hou, T.-Z.?; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X.-B.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q. Towards stable lithium–sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. 2017, 8, 194-201.
Chen, C.-Y.?; Peng, H.-J.?; Hou, T.-Z.?; Zhai, P.-Y.; Li, B.-Q.; Tang, C.; Zhu, W.; Huang, J.-Q.; Zhang, Q. A Quinonoid-Imine-Enriched Nanostructured Polymer Mediator for Lithium–Sulfur Batteries. Adv. Mater. 2017, 29, 1606802.
Chen, X.; Hou, T.; Peng, H.; Cheng, X.; Huang, J.; Zhang, Q. Review on the applications of first-principles calculation in lithium-sulfur batteries. Energy Storage Science and Technology 2017, 6, 500-521.
Chen, X.; Peng, H.-J.; Zhang, R.; Hou, T.-Z.; Huang, J.-Q.; Li, B.; Zhang, Q. An Analogous Periodic Law for Strong Anchoring of Polysulfides on Polar Hosts in Lithium Sulfur Batteries: S- or Li-Binding on First-Row Transition-Metal Sulfides? ACS Energy Lett. 2017, 2, 795-801.
Tang, C.; Wang, H.-F.; Chen, X.; Li, B.-Q.; Hou, T.-Z.; Zhang, B.; Zhang, Q.; Titirici, M. M.; Wei, F. Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis. Adv. Mater. 2016, 28, 6845-6851. (Back cover, ESI Highly Cited Paper)
Hou, T.-Z.; Chen, X.; Peng, H.-J.; Huang, J.-Q.; Li, B.-Q.; Zhang, Q.; Li, B. Design Principles for Heteroatom-Doped Nanocarbon to Achieve Strong Anchoring of Polysulfides for Lithium–Sulfur Batteries. Small 2016, 12, 3283-3291. ( ESI Highly Cited Paper)
Cheng, X.-B.; Hou, T.-Z.; Zhang, R.; Peng, H.-J.; Zhao, C.-Z.; Huang, J.-Q.; Zhang, Q. Dendrite-Free Lithium Deposition Induced by Uniformly Distributed Lithium Ions for Efficient Lithium Metal Batteries. Adv. Mater. 2016, 28, 2888-2895. (Front cover, ESI Highly Cited Paper)
Yuan, Z.?; Peng, H.-J.?; Hou, T.-Z.?; Huang, J.-Q.; Chen, C.-M.; Wang, D.-W.; Cheng, X.-B.; Wei, F.; Zhang, Q. Powering Lithium–Sulfur Battery Performance by Propelling Polysulfide Redox at Sulfiphilic Hosts. Nano Lett. 2016, 16, 519-527. ( ESI Highly Cited Paper)
Hou, T.-Z.; Peng, H.-J.; Huang, J.-Q.; Zhang, Q.; Li, B. The formation of strong-couple interactions between nitrogen-doped graphene and sulfur/lithium (poly)sulfides in lithium–sulfur batteries. 2D Mater. 2015, 2, 014011.
Peng, H.-J.; Hou, T.-Z.; Zhang, Q.; Huang, J.-Q.; Cheng, X.-B.; Guo, M.-Q.; Yuan, Z.; He, L.-Y.; Wei, F. Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfur-Containing Guest for Highly Stable Lithium–Sulfur Batteries: Mechanistic Insight into Capacity Degradation. Adv. Mater. Interfaces 2014, 1, 1400227. (Inside cover, ESI Highly Cited Paper)