近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
学术专著
C. Shang (2018). Dynamic Modeling of Complex Industrial Processes: Data-Driven Methods and Application Research. Springer, 2018. ISBN 978-981-10-6676-4. (143 pages)
主要论文
Shang, C., Ding, Steven X., Ye, H., & Huang, D. (2022) From generalized Gauss bounds to distributionally robust fault detection with unimodality information. IEEE Transactions on Automatic Control. doi: 10.1109/TAC.2022.3220180. (Regular Paper)
Huo, K., Huang, D., & Shang, C. (2023) A novel white component analysis for dynamic process monitoring. Journal of Process Control, 127, 102998.
Sader, M., Li, W., Liu, Z., Jiang, H., & Shang, C. (2023). Semi-global fault-tolerant cooperative output regulation of heterogeneous multi-agent systems with actuator saturation. Information Sciences. 641, 119028.
Liu, Q., Shang, C., Liu, T., & Huang, D. (2023) Efficient relay autotuner of industrial controllers via rank-constrained identification of low-order time-delay models. IEEE Transactions on Control Systems Technology. 31(4), 1787-1802. (Regular Paper)
Li, K., Shang, C., & Ye, H. (2022) Reweighted regularized prototypical network for few-shot fault diagnosis. IEEE Transactions on Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2022.3232394.
Shang, C., Wang, C., You, K., & Huang, D. (2022). Distributionally robust chance constraint with unimodality-skewness information and conic reformulation. Operations Research Letters, 50(2), 176-183.
Shang, C., & You, F. (2021). A posteriori probabilistic bounds of convex scenario programs with validation tests. IEEE Transactions on Automatic Control. 66(9), 4015-4028. (Regular Paper)
Shang, C., Ding, S. X., & Ye, H. (2021). Distributionally robust fault detection design and assessment for dynamical systems. Automatica. 125, 109434. (Regular Paper)
Shang, C., Huang, X., Ye, H., & Huang, D. (2021) Group-sparsity-enforcing fault discrimination and estimation with dynamic process data. Journal of Process Control, 105, 236-249.
Guo, Z., Shang, C., & Ye, H. (2021) A novel similarity metric with application to big process data analytics. Control Engineering Practice. 104843.
Han, B., Shang, C., & Huang, D. (2021) Multiple kernel learning-aided robust optimization: Learning procedure, computational tractability, and usage in multi-stage decision-making. European Journal of Operational Research. 292(3), 1004-1018.
Scott, D., Shang, C., Huang, B., & Huang, D. (2021). A holistic probabilistic framework for monitoring non-stationary dynamic industrial processes. IEEE Transactions on Control Systems Technology. 29(5), 2239-2246.
Liu, Q., Shang, C., & Huang, D. (2021). Efficient low-order system identification from low-quality step response data with rank-constrained optimization. Control Engineering Practice. 107, 104671. (Featured Paper)
Shang, C., Chen, W. H., Stroock, A. D., & You, F. (2020). Robust model predictive control of irrigation systems with active uncertainty learning and data analytics. IEEE Transactions on Control Systems Technology, 28, 1493-1504. (Regular Paper)
Shang, C., Ji, H., Huang, X., Yang, F., & Huang, D. (2019). Generalized grouped contributions for hierarchical fault diagnosis with group Lasso. Control Engineering Practice, 93, 104193.
Shang, C., & You, F. (2019). Data analytics and machine learning for smart process manufacturing: Recent advances and perspectives in the big data era. Engineering, 5(6), 1010-1016. (Invited Paper)
Shang, C., & You, F. (2019). A data-driven robust optimization approach to scenario-based stochastic model predictive control. Journal of Process Control, 75, 24-39.
Shang, C., & You, F. (2018). Distributionally robust optimization for planning and scheduling under uncertainty. Computers & Chemical Engineering, 110, 53-68.
Shang, C., Yang, F., Huang, B., & Huang, D. (2018). Recursive slow feature analysis for adaptive monitoring of industrial processes. IEEE Transactions on Industrial Electronics, 65(11), 8895-8905.
Li, F., Zhang, J., Shang, C., Huang, D., Oko, E., & Wang, M. (2018). Modelling of a post-combustion CO2 capture process using deep belief network. Applied Thermal Engineering, 130, 997-1003
Shang, C., Huang, X., & You, F. (2017). Data-driven robust optimization based on kernel learning. Computers & Chemical Engineering, 106, 464-479.
Gao, X., Shang, C., Huang, D., & Yang, F. (2017). A novel approach to monitoring and maintenance of industrial PID controllers. Control Engineering Practice, 64, 111-126.
Gao, X., Zhang, J., Yang, F., Shang, C., & Huang, D. (2017). Robust proportional–integral-derivative (PID) design for parameter uncertain second-order plus time delay (SOPTD) processes based on reference model approximation. Industrial & Engineering Chemistry Research, 56(41), 11903-11918.
Gao, X., Yang, F., Shang, C., & Huang, D. (2017). A novel data-driven method for simultaneous performance assessment and retuning of PID controllers. Industrial & Engineering Chemistry Research, 56(8), 2127-2139.
Shang, C., Huang, B., Yang, F., & Huang, D. (2016). Slow feature analysis for monitoring and diagnosis of control performance. Journal of Process Control, 39, 21-34.
Guo, F., Shang, C., Huang, B., Wang, K., Yang, F., & Huang, D. (2016). Monitoring of operating point and process dynamics via probabilistic slow feature analysis. Chemometrics and Intelligent Laboratory Systems, 151, 115-125.
Gao, X., Yang, F., Shang, C., & Huang, D. (2016). A review of control loop monitoring and diagnosis: Prospects of controller maintenance in big data era. Chinese Journal of Chemical Engineering, 24(8), 952-962.
Shang, C., Huang, B., Yang, F., & Huang, D. (2015). Probabilistic slow feature analysis-based representation learning from massive process data for soft sensor modeling. AIChE Journal, 2015, 61(12), 4126-4139.
Shang, C., Yang, F., Gao, X., Huang, X., Suykens, J. A. K., & Huang, D. (2015). Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis. AIChE Journal, 2015, 61(11), 3666-3682.
Shang, C., Huang, X., Suykens, J. A. K., & Huang, D. (2015) Enhancing dynamic soft sensors based on DPLS: a temporal smoothness regularization approach. Journal of Process Control, 28, 17-26.
Gao, X., Shang, C., Jiang, Y., Huang, D., & Chen, T. (2014). Refinery scheduling with varying crude: A deep belief network classification and multimodel approach. AIChE Journal, 60(7), 2525-2532.
Shang, C., Yang, F., Huang, D., & Lyu, W. (2014). Data-driven soft sensor development based on deep learning technique. Journal of Process Control, 24(3), 223-233.
Shang, C., Gao, X., Yang, F., & Huang, D. (2014). Novel Bayesian framework for dynamic soft sensor based on support vector machine with finite impulse response. IEEE Transactions on Control Systems Technology, 22(4), 1550-1557.