当前位置: X-MOL首页全球导师 国内导师 › 王小群

个人简介

1995年获俄罗斯国立圣彼得堡大学博士学位。清华大学数学科学系长聘教师,国家杰出青年基金获得者,教育部长江学者特聘教授。担任或曾任全国应用统计专业学位研究生教育指导委员会委员,中国工业与应用数学学会秘书长、常务理事,中国运筹学会金融工程和风险管理分会副理事长。 工作履历 1997年起在清华大学数学科学系任教,历任讲师、副教授、教授 多次访问香港浸会大学、澳大利亚 The University of New South Wales, 加拿大 University of Waterloo 所授课程 概率论(1)(本科生) 概率论(2)(研究生) 概率论与数理统计(本科生) 随机数学 (本科生) 金融数学 (研究生) 计算金融学 (研究生) 蒙特卡罗方法 (研究生) 统计案例与实务 (研究生) 奖励与荣誉 清华大学学术新人奖获得者 (2004) 国家杰出青年基金获得者 (2009) 教育部长江学者特聘教授 (2011)

研究领域

金融数学、计算金融学、统计计算与数据科学、随机模拟与确定性模拟方法、计算复杂性理论

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Zhijian He and Xiaoqun Wang. Convergence analysis of quasi-Monte Carlo sampling for quantile and expected shortfall. Mathematics of Computation, Vol. 90, No. 327, 303-319, 2021. Chaojun Zhang, Xiaoqun Wang, Zhijian He. Efficient importance sampling in quasi-Monte Carlo methods for computational finance. SIAM Journal on Scientific Computing,Vol. 43, No.1, B1-B29, 2021. Chengfeng Weng, Xiaoqun Wang and Zhijian He. Efficient computation of option prices and Greeks by quasi-Monte Carlo method with smoothing and dimension reduction. SIAM Journal on Scientific Computing, Vol. 39, No. 2, B298-B322, 2017. Xiaoqun Wang. Handling discontinuities in financial engineering: A good path simulation approach. Operations Research, Vol. 64, No. 2, 297-314, 2016. Zhijian He and Xiaoqun Wang. On the convergence rate of randomized quasi-Monte Carlo f for discontinuous functions, SIAM Journal on Numerical Analysis, Vol. 53, No. 5, 2488-2503, 2015. Zhijian He, Xiaoqun Wang, Good path generation methods in quasi-Monte Carlo for pricing financial derivatives, SIAM Journal on Scientific Computing, 2014,Vol. 36, No. 2, pp. B171-B197, 2014. Xiaoqun Wang and K. S. Tan. Pricing and hedging with discontinuous functions: quasi-Monte Carlo Methods and dimension reduction. Management Science, Vol. 59, No. 2, 376-389, 2013. Xiaoqun Wang. Enhancing quasi-Monte Carlo by exploiting additive approximation for problems in finance. SIAM Journal on Scientific Computing, Vol.34, No.1, A283-A308, 2012. Xiaoqun Wang and I. H. Sloan. Quasi-Monte Carlo methods in financial engineering: an equivalent principle and dimension reduction. Operations Research, Vol. 59, No. 1, 80-95, 2011. Xiaoqun Wang. Dimension reduction techniques in quasi-Monte Carlo methods for option pricing. INFORMS Journal on Computing, Vol. 21, No.3, 488-504, 2009. Xiaoqun Wang. Constructing robust lattice rules for computational finance. SIAM Journal on Scientific Computing, Vol. 29, No. 2, 598 - 621, 2007. Xiaoqun Wang. On the effects of dimension reduction techniques on some high-dimensional problems in finance. Operations Research, Vol.54, No.6, 1063-1078, 2006. Xiaoqun Wang and I. H. Sloan. Efficient weighted lattice rules with applications to finance. SIAM Journal on Scientific Computing, Vol. 28, No.2, 728-750, 2006. Dick, J., I. H. Sloan, Xiaoqun Wang and H. Wozniakowski. Good lattice rules in weighted spaces with general weights. Numerische Mathematik, Vol. 103, No. 1, 63-97, 2006. Xiaoqun Wang and I. H. Sloan. Why are high-dimensional finance problems often of low effective dimension. SIAM Journal on Scientific Computing, Vol. 27, No.1, 159-183, 2005. Xiaoqun Wang, I. H. Sloan and J. Dick. On Korobov lattice rules in weighted spaces. SIAM Journal on Numerical Analysis, Vol. 42, No. 4, 1760-1779, 2004. Xiaoqun Wang. Strong tractability of multivariate integration using quasi-Monte Carlo algorithms. Mathematics of Computation, 2003, Vol.72, No. 242, 823-838, 2003. Xiaoqun Wang and Kai-Tai Fang. The effective dimensions and quasi-Monte Carlo integration. Journal of Complexity, Vol. 19, No. 2, 101-124, 2003. Hickernell, F. J. and Xiaoqun Wang. The error bounds and tractability of quasi-Monte Carlo algorithms in infinite dimension. Mathematics of Computation, Vol. 71, No. 240, 1641-1661, 2002.

推荐链接
down
wechat
bug