当前位置: X-MOL首页全球导师 国内导师 › 向东

个人简介

教育背景 1987及1990年毕业于重庆大学获计算机科学学士学位及硕士学位 1993年于中国科学院计算技术研究所获得计算机工程博士学位 1994-1995为加拿大,Concordia大学电子工程系博士后 1995-1996为美国Illinois大学,Urbana Champaign, 电子工程系(Coordinated Science Lab.)博士后 工作履历 于1987及1990年毕业于重庆大学获计算机科学学士学位及硕士学位 1993年于中国科学院计算技术研究所获得计算机工程博士学位 1994-1995为加拿大,Concordia大学电子工程系博士后,1995-1996为美国Illinois大学,Urbana Champaign, 电子工程系(Coordinated Science Lab.)博士后 1996.10 -2003.3为清华大学,微电子学研究所副教授 2003.3-2004.12为清华大学软件学院副教授 2003.4-2003.9为日本奈良先端科大JSPS研究员 现为清华大学软件学院教授, 博士生导师 学术兼职 IEEE Senior Member, 中国计算机学会高级会员, ACM会员。 IEEE Trans. Computers, IEEE Trans. Computer-Aided Design, IEEE Trans. Parallel and Distributed Systems, J. of Parallel and Distributed Computing,IEEE Trans. VLSI Systems, IEEE Trans. Reliability,IEEE Trans. on Evolutionary Computation,ACM Trans. On Design Automation of Electronic Systems, IEE Proc. Part E, Inform. Sci.等杂志评审人;《中国科学》等审稿人。IEEE Int. Test Conference, ACM/IEEE Design Automation Conference, Int. Conf. on Parallel Processing, IEEE Int. Symp. On Parallel and Distributed Processing, IEEE Int. Conf. on Distributed Computing Systems, IEEE ISCAS审稿人。12th , 14th , 16th, 17th IEEE Asian Test Symposium(2008),20th ,21th, 22th IEEE Asian Test Symposium (2013) 程序委员会委员; 11th , 12th , 13th, 14th ,15th ,17th ,18th 19th IEEE Pacific Rim Dependable Computing Conf.(2012),程序委员会委员; 2005,2006,2007,2008,2009 IEEE Int. Symp. On Cir. and Syst., 程序委员会委员; 28th IEEE Int. Conference on Distributed Computing Systems,2008, 程序委员会委员;19th IEEE Int. Conference on Computer Communications and Networks, 2008, 程序委员会委员;8th Int. Conf. on Young Computer Scientists, 2008, 程序委员会委员;Int. Conf. on Algorithms and Architectures for Parallel Processing, 2008, 程序委员会委员; 10th IEEE Int. Conf. on High-Performance Computing and Communication, 2008, 程序委员会委员。 IEEE Annual Symp. On VLSI, 2011, 2012, 2013, 程序委员会委员。 28th IEEE Int. Conference on Computer Design, 2011, 2012,2013程序委员会委员。 15th IEEE Pacific Rim Dependable Computing Symposium(2009), 程序委员会主席。 Int. Conf. on Reliability and Safety Engineering2005 and INCRESE2006, 及INCRESE2007, INCRESE2008 指导委员会委员;IEEE Int. Workshop on RTL and High-Level Testing指导委员会委员。IEEE Int. Workshop on RTL and High-Level Testing指导委员会副主席。A keynote address at INCRESE2005(India) 奖励与荣誉 2003: JSPS fellowship

研究领域

数字系统测试与设计:可测试性设计,可测试性分析,低成本测试,自测试,测试码产生;容错计算,并行/分布式计算,计算机网络通讯

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

非扫描可测试性设计: D. Xiang, Y. Xu, and H. Fujiwara, “Non-scan design for testability for synchronous sequential circuits based on conflict resolution,” IEEE Trans. On Computers, vol. 52, no. 8, pp. 1063-1075, 2003. D. Xiang and H. Fujiwara, “Handling the pin overhead problem for high quality and at-speed test,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 9, pp. 1105-1113, 2002. D. Xiang and Y. Xu, “Cost-effective non-scan design for testability for synchronous sequential circuits,” Proc. of 19th IEEE Int. Conference on Computer Design, pp.154-159 , Austin, USA, Sept, 2001. D. Xiang and Y. Xu, “Partial reset for synchronous sequential circuits using almost independent reset signals,” Proc. of 19th IEEE VLSI Test Symposium, pp.82-87, Los Angels, April, 2001. D. Xiang, S. Gu, and H. Fujiwara, “Non-scan design for testability based on fault-oriented conflict analysis,” Proc. of 11th IEEE Asian Test Symposium, Guam, USA, Nov., 2002. D. Xiang, S. Gu, and H. Fujiwara, “Non-scan design for testability for mixed RTL circuits with both data paths and controller via conflict analysis,” Proc. of 12th IEEE Asian Test Symposium, pp. 300-303, 2003. D. Xiang, S. Gu, and H. Fujiwara, “Non-scan design for testability for synchronous sequential circuits based on fault-oriented conflict analysis,” IEICE Trans. on Information and Systems, vol.E86-D, pp. 2407-2417, Nov., 2003. D. Xiang, S. Gu, and Y. Xu, “Non-scan DFT based on hard fault oriented conflict analysis,” Journal of Tsinghua University, pp.1001-1004, vol. 43, no. 7, 2003 (in Chinese). D. Xiang, S. Gu, and Y. Xu, “Partial reset for synchronous sequential circuits using independent reset signals,” Chinese Journal of Computers, vol. 27, no. 2, pp. 224-230, 2004 (in Chinese). 低成本扫描测试: D. Xiang, S. Gu, J. Sun, and D. Wu, “Cost-effective scan design with non-scan test application cost and test power,” in Proc. of ACM/IEEE Design Automation Conference, pp. 744-747, June, Anaheim, 2003. D. Xiang, K. Li, and H. Fujiwara, “Design for scan testing with low test application cost and low test data volume by reconstructing scan flip-flops,” in Proc. of 14th IEEE Asian Test Symposium, pp. 318-321, Dec., 2005. D. Xiang, K. Li, and H. Fujiwara, “Localizing test power consumption for scan testing,” in Proc. of 6th IEEE Int. Workshop on RTL and High Level Testing, pp. 18-23, 2005. D. Xiang and K. Li, “Low power scan testing using a two-stage scan architecture,” Chinese Journal of Computers, pp. 786-791, no. 5, 2006 (in Chinese). K. Li and D. Xiang, “Scan testing with low power, test application time and reduced test data volume,” Journal of Tsinghua University, pp. 98-101, no. 1, 2006(in Chinese). D. Xiang, K. Li, J. Sun, and H. Fujiwara, “Reconfigured scan forest for test application cost, test data volume and test power reduction,” IEEE Trans. on Computers, vol. 56, no. 4, pp. 557-562, April 2007. D. Xiang, K. Li, H. Fujiwara, K. Thulasiraman, and J. Sun, “Constraining transition propagation for low power scan testing using a two-stage scan architecture,” IEEE Trans. Circuits and Systems-II, vol. 54, no. 5, pp. 450-454, May 2007. D. Hu and D. Xiang, “Test power reduction using clock disabling,” Journal of Tsinghua University, vol. 47, no. 7, pp. 1216-1219, July 2007 (in Chinese). Q. Xu, D. Hu, and D. Xiang, “Pattern-directed circuit partitioning for test power reduction,” in Proc. of IEEE Int. Test Conference, Santa Clara, Oct. 2007. Z. Chen, D. Xiang, and B. Yin, “A power-effective scan architecture using scan flip-flops clustering and post-generation filling,” in Proc. 19th ACM Great Lakes Int. Symp. on VLSI, pp. 517-522, May 2009. D. Xiang, D. Hu, Q. Xu, and A. Orailoglu, “Low-power scan testing for test data compression using a routing-driven scan architecture,” IEEE Trans. on Computer-Aided Design, vol. 28, pp. 1101-1105, July 2009. Z. Chen, S. Seth, D. Xiang, and B. Bhattacharya,“A unified solution to scan test volume, time and power minimization,”in Proc. of 23th IEEE/ACM VLSI Design Conference, Jan. 2010. Z. Chen, S. Seth, D. Xiang, and Bhargab B Bhattacharya, “ PVT: Unified reduction of test power, volume, and test time using double-tree scan architecture ,” Journal of Low Power Electronics, American Scientific Publishers, July 2010. J. Li, Y. Huang, and D. Xiang, “Prediction of compression bound and optimization architecture of linear decompression-based schemes,” in Proc. of 29th IEEE VLSI Test Symposium, May 2011. Z. Chen, D. Xiang, J. Li, and Y. Huang, “Virtual circuit model for low-power scan testing in linear decompressor-based compression environment,” IEEE North Atlantic Test Workshop, 2011. D. Xiang and Z. Chen, “Selective test response collection for low-power scan testing with well-compressed test data,” in Proc. of 20th IEEE Asian Test Symposium, pp. 40-45, Nov. 2011. Z. Chen, S. Seth, D. Xiang, and B. Bhattatcharya, “Diagnosis of multiple scan-chain faults in the presence of system logic defects,” in Proc. of 20th IEEE Asian Test Symposium, Nov. 2011. Zhen Chen, Jia Li, Dong Xiang and Yu Huang, “Virtual circuit model for low power scan testing in linear decompressor-based compression environment,” in Proc. of 20th IEEE Asian Test Symposium, pp. 96-101, Nov. 2011. 部分扫描设计 D. Xiang and J.H.Patel, “Partial scan design based on valid state information and functional information,” IEEE Trans. on Computers, vol.53, no.3, pp.276-287, 2004. [29] D. Xiang and Y. Xu, “A multiple phase partial scan design method,” Proc. of 10th IEEE Asian Test Symposium, Kyoto, pp.17-22, Nov., 2001. D. Xiang and J. Patel, “A global algorithm for the partial scan design problem using circuit state information,” Proc. of IEEE Int. Test Conference, pp. 548-557,Nov., 1996. D. Xiang and X. Liu, “Partial scan design based on conflict analysis and circuit state information,” Journal of Electronics, vol. 26, no.1, pp. 124-130, 2004 (in Chinese). 自测试 D. Xiang, M. J. Chen, J. G. Sun, and H. Fujiwara, “Improving the effectiveness of scan-based BIST using scan chain partitioning,” IEEE Trans. on Computer-Aided Design, vol. 24, no. 6, pp.916-927, 2005. D. Xiang, M. J. Chen, J. Sun, and H. Fujiwara, “Improving test quality of scan-based BIST by scan chain partitioning,” Proc. of 12th IEEE Asian Test Symposium, pp.12-17, 2003. D. Xiang, M. Chen, K. Li, and D. Wu, “Scan-based BIST using an improved scan forest architecture,” in Proc. of 13th IEEE Asian Test Symposium, pp. 88-93, Nov., 2004. D. Xiang, D. Z. Wei, and S. S. Chen, “A global test point placement algorithm for combinational circuits,” Proc. of 5th IEEE Int. Conf. on VLSI Design, pp. 227-232, 1992. D. Xiang and D. Z. Wei, “Global: A design for random testability algorithm,” J. of Computer Science and Technology, vol. 9, no. 2, pp. 182-192, 1994. D. Xiang, D. Z. Wei, and S. S. Chen, “Probabilistic models for estimation of random and pseudorandom test length,” J. of Computer Science and Technology, vol. 7, no.2, pp. 164-174, 1992. D. Xiang,“Knowledge-based design for testability,”Acta Electronica Sinica, vol. 19, no. 3,pp. 106-109, 1991 (in Chinese). D. Xiang, M. Chen, and H. Fujiwara, “Using weighted scan enable signals to improve test effectiveness of scan-based BIST,” in Proc. 14th IEEE Asian Test Symposium, pp. 126-131, Dec., 2005. D. Xiang, Y. Zhao, K. Chakrabarty, J. Sun, and H. Fujiwara, “Compressing test data for deterministic BIST using a reconfigurable scan architecture,” in Proc. of 15th IEEE Asian Test Symposium, Japan, pp.299-304, Nov., 2006. D. Xiang, M. Chen, and J. Sun, “Using weighted scan enable signals to improve the test effectiveness of scan-based BIST,” Science in China, vol. 36, no. 8, pp. 902-911, 2006 (in Chinese). D. Xiang, M. J. Chen, and H. Fujiwara,“Using weighted scan enable signals to improve test effectiveness of scan-based BIST,” IEEE Trans. On Computers, vol. 56, no. 12, pp. 1619-1628, 2007 (featured article). D. Xiang, Y. Zhao, K. Chakrabarty, and H. Fujiwara, “A reconfigurable scan architecture with weighted scan enable signals for deterministic BIST,”IEEE Trans. on Computer-Aided Design, vol. 25, no. 6, pp. 999-1012, June, 2008. D. Xiang, M. Chen, and J. Sun, “Scan BIST with biased scan test signals,” Science in China (English version), vol. 51, no. 7, pp. 881-895, July 2008. 可测试性分析 D. Xiang, Y. Xu, and H. Fujiwara, “Non-scan design for testability for synchronous sequential circuits based on conflict analysis,” Proc. of IEEE Int. Test Conference, Atlantic City, pp. 420-429, Oct., 2000. D. Xiang, S. Venkataraman, K. Fuchs, and J. Patel, “Partial scan design based on circuit state information,” in Proc. 33th of ACM/IEEE Design Automation Conference, pp. 807-8l2, Las Vegas, l996. D. Xiang, “SCTM: A conflict oriented testability measure,” Chinese Journal of Computers, vol. 16, no. 4, pp. 273-280, 1993 (in Chinese). D. Xiang and D. Z. Wei, “On functional circuit testability analysis,” Chinese Journal of Computers, vol. 16, no. 1, pp. 35-44, 1993 (in Chinese). D. Xiang and K. Thulasiraman, “Design for testability of path delay faults based on conflict analysis,”in Proc. of IEEE DFT/BIST Workshop, USA, 1995. D. Xiang and D. Z. Wei, “Testability estimation for hierarchical description circuits,” Proc. of IEEE Pacific Rim Fault-Tolerant Systems Symposium, 1993. 延迟测试 D. Xiang, K. Li, H. Fujiwara, and J. Sun, “Generating compact robust and non-robust tests for complete coverage of path delay faults based on stuck-at tests,” in Proc. of 24th IEEE Int. Conference on Computer Design, pp. 446-451, 2006. D. Xiang, Y. Zhao, K. Li, and H. Fujiwara, “Fast and effective fault simulation for path delay faults based on selected testable paths,” in Proc. of IEEE Int. Test Conference, Santa Clara, pp. 707-716, Oct. 2007. D. Xiang, K. Chakrabarty, D. Hu, and H. Fujiwara, “Scan testing for complete coverage of path delay faults with reduced test data volume, test application time and hardware,” in Proc. of 16th IEEE Asian Test Symposium, Oct. 2007. B. Yin, D. Xiang, and Z. Chen,“New techniques for accelerating small delay ATPG and generating compact test sets,” in Proc. of 22th IEEE/ACM Int. Conf. on VLSI Design, Jan. 2009. Z. Chen, B. Yin, and D. Xiang, “Conflict-driven scan architecture for high transition fault coverage and low power,” in the Proc. of 14th IEEE/ACM Asian and South Pacific Design Automation Conference, Jan. 2009. D. Xiang, B. Yin, and K. T. Cheng, “Dynamic test compaction for transition faults in broadside scan testing based on an influence cone measure,“ in the Proc. of 27th IEEE VLSI Test Symposium, pp. 251-256, May 2009. Z. Chen, D. Xiang, and B. Yin, “A novel test application scheme for high transition fault coverage and low test cost,” in Proc. of 27th IEEE VLSI Test Symposium, pp. 146-151, May 2009. D. Xiang, B. Yin, and K. Chakrabarty, “Compact test generation for small delay defects using testable path information,” in 18th Proc. of Asian Test Symposium, Nov. 2009. Z. Chen and D. Xiang, “Low-capture-power at-speed testing using partial launch-on-capture Test Scheme,” in Proc. of 28th IEEE VLSI Test Symposium, May 2010. Z. Chen, S. Seth, and D. Xiang, “A novel hybrid delay testing scheme with low test power, volume, and time,” in Proc. of 28th IEEE VLSI Test Symposium, May 2010. D. Xiang and Z. Chen, “Compact test generation for complete coverage of path delay faults in a standard scanned circuit,”in Proc. of Int. Workshop on Register-Transfer Level Testing, pp. 67-75, Dec. 2009. Z. Chen and D. Xiang,“A novel test application scheme for high transition fault coverage and low test cost,” IEEE Trans. on Computer-Aided Design, vol. 29, no. 6, pp. 966-976, June 2010. Z. Chen, J. Feng, D. Xiang, and B. Yin, “Scan chain configuration based X-filling for low power and high quality testing”, IET Computers & Digital Techniques, Vol.4, No.1, pp.1–13, 2010 (Featured paper). Z. Chen, K. Chakrabarty, and D. Xiang, “MVP: Capture-power reduction with minimum-violations partitioning for delay testing,” in Proc. of IEEE/ACM Int. Conf. on Computer-Aided Design, pp. 149-154, Nov. 2010. J. Li, Q. Xu, and D. Xiang, “Compression-aware capture power reduction for at-speed testing,” in Proc. 16th IEEE/ACM Asia and South-Pacific Design Automation Conference, Jan. 2011. Z. Chen, K. Chakrabarty, and D. Xiang, “MVP: Minimum-violations partitioning for reducing capture power in at-speed delay-fault testing,” IEEE Trans. on Computer-Aided Design, vol. 30, no. 11, pp. 1762-1767, Nov. 2011. D. Xiang, Z. Chen, and L.T. Wang, “Scan flip-flop grouping to compress test data and compact test responses for broadside delay testing,” ACM Trans. on Design Automation of Electronic Systems, vol. 17, no. 2, article 18, April 2012. D. Xiang, J. Li, K. Chakrabarty, and X. Lin, “Test Compaction for Small Delay Defects Using an Effective Path Selection Scheme,” ACM Trans. on Design Automation of Electronic Systems, vol. 18, no. 3, July 2013. D. Xiang, W. Sui, B. Yin, and K.-T. Cheng, “Compact test generation with an influence input measure for launch-on-capture transition fault testing,” accepted to appear in IEEE Trans. on VLSI Systems, Aug. 2013. 测试调度 D. Xiang, “A new parallel testing scheme based on test subsession partitioning,” Acta Electronica Sinica, vo1.27, No.2, pp.28-31, 1999 (in Chinese). D. Xiang and D. Z. Wei, “Optimized design for test scheduling,” Chinese Journal of Computers, vol. 17, no.1, pp.37-45, 1994 (in Chinese). D. Xiang, “Test scheduling using test subsession partitioning,” Proc. of 3th IEEE Asian Test Symposium, Japan, 1994. D. Xiang, “Test scheduling and control in a parallel processing environment,” Proc. of 2th IEEE Asian Test Symposium, 1993. D. Xiang and D. Z. Wei, “Optimal design for parallel testing using circuit partitioning,” Proc. of 7th IEEE Int. VLSI Design Conference, pp. 297-300, 1994, Calcutta, India. D. Xiang, D. Z. Wei, and T. H. Chen, “An optimal design for parallel testing,” Proc. of IEEE Pacific Rim Fault-Tolerant Systems Symposium, Kawasaki, Japan, 1991. D. Xiang and D. Z. Wei, “Dynamic test scheduling in a distributed system,” Acta Electronica Sinica, vol. 20, no. 6, pp. 53-58, 1992 (in Chinese). D. Xiang and D. Z. Wei, “Test scheduling and its control,” Acta Electronica Sinica, vol. 21, no.11, pp.33-42, 1993 (in Chinese). 片上网络 D. Xiang and Y. Zhang, “Cost-effective power-aware core testing in NoCs based on a new unicast-based multicast scheme,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 30, no. 1, pp. 135-147, Jan. 2011. X. Wang and D. Xiang, “Multi-mapping meshes: a new communicating fabric for Networks-on-Chip,”in Proc. of 16th IEEE Int. Conf. on Parallel and Distributed Systems, Dec. 2010. 三维IC测试 J. Li and D. Xiang, “DfT optimization for pre-bond testing of 3D-SICs containing TSVs,” in 28th IEEE Int. Conf. on Computer Design, Oct. 2010. D. Xiang, K. L. Shen, and Y. D. Deng, “DfT optimization for pre-bond testing of 3D-SICs containing TSVs,” in Proc. of 21th IEEE Asian Test Symposium,pp.101-106, 2012. [82] D. Xiang and K. L. Shen, “A thermal-driven test application scheme for pre-bond and post-bond scan testing of 3-dimensional ICs,”accepted to appear in ACM Journal on Emerging Technologies of Computing Systems, Jan. 2013. Dong Xiang, Gang Liu, Krishnendu Chakrabarty and Hideo Fujiwara, “Thermal-Aware Test Scheduling for NOC-Based 3D Integrated Circuits,” accepted to appear in Proc. of 21th IFIP/IEEE Int Conference on VLSI-SOC, 2013. D. Xiang, “A cost-effective scheme for network-on-chip router and interconnect testing,” accepted to appear in Proc. of 22th IEEE Asian Test Symposium, 2013. 容错计算 D. Xiang, “Fault-tolerant routing in hypercube multicomputers using local safety information,” IEEE Trans. on Parallel and Distributed Systems, vol. 12, no. 9, pp. 942-951, 2001. D. Xiang and A. Chen, “Reliable broadcasting in wormhole-routed hypercube -connected networks using local safety information,” IEEE Trans. on Reliability, pp. 245-256, vol. 52, no. 2, June, 2003. D. Xiang, A. Chen, and J. Wu, “Fault-tolerant broadcasting for hypercubes based on local safety information,” Proc. of 9th IEEE Int. Conf. on Parallel and Distributed Systems, pp. 31-36, Taiwan, Dec., 2002. D. Xiang and J. Wu, “Reliable multicasting for hypercube multicomputers using local safety information,” Proc. of 13th Int. Conf. on Parallel and Distributed Computing Systems, Las Vegas, Aug., pp. 529-534, 2000. D. Xiang, A. Chen, and J. Wu, “Local-safety-information-based broadcasting in hypercube multicomputers with node and link faults,” Int. Journal of Interconnection Networks, vol. 2, no. 3, World Scientific Publishers, pp. 365-378, 2001 (invited paper). D. Xiang and J. Wu, “Reliable unicasting in faulty hypercubes using local safety information,” Proc. of 4th IEEE Int. Conf. on Algorithms and Architectures for Parallel Processing, Hong Kong, Dec., 2000. D. Xiang, “Partial path set-up for fault-tolerant routing in hypercube multicomputers,” Future Generation Computer Systems, vol. 22, pp. 812-819, Elsevier Scientific Press, Aug., 2006. D. Xiang, A. Chen, and J. Wu,“Local-safety-information-based fault-tolerant broadcasting in hypercubes,” J. of Inform. Sci. and Eng., vol. 19, no. 3, pp.467-478, June, 2003. D. Xiang and A. Chen, “Fault-tolerant routing in hypercubes based on partial path set-up, ” in Proc.of 2003 IEEE Int. Workshop on PMEO-PDS03 (with IPDPS03), IEEE Computer Society Press. 向东,陈爱,孙家广,基于平面故障块三维mesh/torus网络容错路由, 《计算机学报》, vol. 27, no. 5, pp. 611-618, 2004. D. Xiang, A. Chen, and J. G. Sun, “Fault-tolerant multicasting in hypercube multicomputers using local safety information,” Journal of Parallel and Distributed Computing, vol. 66, no. 2, pp. 248-256, 2006. D. Xiang, Y. Zhang, and J. Sun, “Unicast-based fault-tolerant multicasting in wormhole -routed hypercubes,” Journal of Systems Architecture, vol.54, no. 12, pp. 1164-1178, Elsevier Scientific Press, 2008. D. Xiang, Y. Zhang, and Y. Pan, “Practical deadlock-free fault-tolerant routing in meshes based on the planar network fault model,”IEEE Trans. on Computers, vol. 58, no. 5, pp. 620-633, 2009. D. Xiang, Y. Zhang, and Y. Xu, “A fault-tolerant routing algorithm design for on-chip optical networks,” accepted to appear in Proc. of 32th IEEE Int. Symposium on Reliable Distributed Systems, Oct. 2013. 并行/分布式计算 D. Xiang, “Deadlock-free adaptive routing in meshes with fault-tolerance ability using channel overlapping,”IEEE Trans. on Dependable and Secure Computing, vol. 8, no. 1, pp.74-88, 2011(featured article). D. Xiang, Y. Zhang, Y. Pan, and J. Wu, “Deadlock-free adaptive routing in meshes based on cost-effective deadlock avoidance schemes,” in 36th IEEE Int. Conference on Parallel Processing, Sept. 2007. D. Xiang, A. Chen, and J. Sun, “Fault-tolerant routing and multicasting for hypercube multicomputers based on partial path set-up,” Parallel Computing, Elsevier Science Press, vol.31, no. 1, pp. 389-411, 2005. D. Xiang, J. Sun, J. Wu, and K. Thulasiraman, “Fault-tolerant routing in meshes /tori using planarly constructed fault blocks,” in Proc. of 34th IEEE Int Conference on Parallel Processing, pp. 577-584, Oslo, Norway, 2005. D. Xiang and A. Chen, “Fault-tolerant routing in 2D meshes/tori using limited -global-safety information,” Proc. of 31th IEEE Int. Conf. on Parallel Processing, pp. 231-238, Vancouver, Aug., 2002. 向东,张跃鲤,mesh网高效无死锁路由算法,《计算机学报》,vol. 30, no. 11, pp. 1954-1963, 2007. Z. Li , Y. Zhao, Y. Cui, and D. Xiang, “A density adaptive routing protocol for large-scale Ad hoc networks,”in Proc. of IEEE Wireless Communications and Networking Conference, 2008. D. Xiang, Y. Pan, Q. Wang, and Z. Chen, “Deadlock-free fully adaptive routing in 2-dimensional tori based on a new virtual network partitioning scheme,” in Proc. of 28th IEEE Int. Conference on Distributed Computing Systems, pp. 454-461, 2008. D. Xiang, Q. Wang, and Y. Pan, “Deadlock-free adaptive routing in 2D tori with a new turn model,”in Proc. 8th IEEE Int. Conf. on Architectures and Algorithms for Parallel Processing, 2008. D. Xiang, Q. Wang, and Y. Pan, “Deadlock-free fully adaptive routing in tori based on a new virtual network partitioning scheme,” in Proc. 37th IEEE Int. Conference on Parallel Processing, pp. 612-619, Sept. 2008. Y. Lin and D. Xiang, “An effective congestion-aware selection function for adaptive routing in interconnection networks,” in Proc.7th IEEE Int. Conf. on Parallel and Distributed Computing, Applications and Technologies, pp. 156-165, 2010. W. Luo and D. Xiang, “An efficient deadlock-free adaptive routing algorithm for torus networks,” IEEE Trans. On Parallel and Distributed Systems, vol. 23, no. 5, pp. 800-808, May 2012. D. Xiang and J. Han, “Multiple spanning tree construction for deadlock-free adaptive routing in irregular networks,” in Proc. of 10th IEEE Int. Symp. On Parallel and Distributed Processing with Application, pp. 9-16,July 2012. X. Wang, D. Xiang, and Z. Yu, “TM: A new and simple topology for interconnection networks,” accepted to appear in Journal of Supercomputing, Springer, 2013. D. Xiang, Z.G. Yu, and J. Wu, “Deadlock-free fully adaptive routing in irregular networks without virtual channels,” in Proc. of 11th IEEE Int. Symp. On Parallel and Distributed Processing with Application, July 2013.

推荐链接
down
wechat
bug