近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Quantum magnetic gradiometer with entangled twin light beams, Science Advance, 9, eadg1760 (2023)
Protection of Noise Squeezing in a Quantum Interferometer with Optimal Resource Allocation, Physical Review Letters 130, 073601 (2023).
Heisenberg uncertainty principle: an advanced undergraduate laboratory experiment based on quantum quadrature operators, European Journal of Physics (2023).
Memory-assisted quantum accelerometer with multi-bandwidth, Photonics Research 10(4), 1022, (2022).
Quantum non-demolition measurement based on an SU(1,1)-SU(2)-concatenated atom-light hybrid interferometer, Photonics Research,10 (2), 475 (2022).
Sensing the performance enhancement via asymmetric gain optimization in the atom-light hybrid interferometer, Optics Express 30(7), 11514 (2022)
Enhancing vacuum squeezing via magnetic field optimization, Zhifei Yu, Shuqi Liu, Jinxian Guo, Guzhi Bao*, Yuan Wu*, and Liqing Chen*, Optics Express 30(10), 17106-17114 (2022).
Xinyun Liang, Zhifei Yu , Chun-Hua Yuan, Weiping Zhang and Liqing Chen, Phase Sensitivity Improvement in Correlation-Enhanced Nonlinear Interferometers, Symmetry, 14, 2684 (2022)
Coherence Protection of Electron Spin in Earth-Field Range by All-Optical Dynamic Decoupling, Physical Review Applied 16, 014045 (2021).
Design of coaxial coils using hybrid machine learning, Rev. Sci. Instrum. 92, 045103 (2021).
Effects of losses on the sensitivity of an actively correlated Mach-Zehnder interferometer, Physical Review A 104, 013725 (2021).
Quantum enhanced Electro-Optic Sensor for E-field measurement, Optics Express 29(21), 32865-32874 (2021).
Super-sensitive rotation measurement with an orbital angular momentum atom-light hybrid interferometer, Optics Express, 29(1): 208-218 (2021).
Effects of losses on the sensitivity of an actively correlated Mach-Zehnder interferometer, Phys. Rev. A 102(3), 013725 (2021)
Atom-Light Hybrid Quantum Gyroscope, Phys. Rev. Applied 14, 064023 (2020)
Reducing the mode-mismatch noises in atom–light interactions via optimization of the temporal waveform, Photonics Research, 8, 1697 (2020).
Nonlinear phase estimation enhanced by an actively correlated Mach-Zehnder interferometer,Physical Review A 102,033520 (2020).
Super-sensitive rotation measurement with an orbital angular momentum atom-light hybrid interferometer, Optics Express, 29, 208 (2020).
A two-mode squeezed light based on a double-pump phase-matching geometry, Chin. Phys. B 29, 074207 (2020).
Angular displacements estimation enhanced by squeezing and parametric amplification, OSA Continuum 3, 3289 (2020).
Quality estimation of non-demolition measurement with lossy atom-light hybrid interferometers, Optics Express 28, 9875 (2020)
High-performance Raman quantum memory with optimal control in room temperature atoms, Nature Communications, 10, 148 (2019).
Enhancement of the Signal-to-Noise Ratio of an Atomic Magnetometer by 10 dB, Physical Review Applied, 11, 054075 (2019).
Arbitrary phase-locking in Mach–Zehnder interferometer,Optics Communications 442, 148–151 (2019).
Pulsed squeezed light via self-rotation, Optics Communications 452, 506(2019)
光和原子关联与量子计量,物理学报, 67, 164204 (2018). (“精密测量物理”重大研究计划十大重点进展邀请综述专刊)
Phase estimation for an SU(1,1) interferometer in the presence of phase diffusion and photon losses, Physical Review A 98, 023803 (2018).
Quantum non-demolition measurement of photon number with atom-light interferometers, Optics Express, 25, 31827 (2017).
Pulse delay of a stimulated Raman process in atomic vapor,Physical Review A 95, 063834 (2017).
88% Conversion Efficiency with an Atomic Spin Wave Mediated Mode Selection, Optics Letters, 42, 1753 (2017).
Atom–light superposition oscillation and Ramsey-like atom–light interferometer, Optica, 3,775(2016).
Effects of losses in the atom-light hybrid SU(1,1) interferometer, Optics Express 24, 17766 (2016).
Cascade correlation-enhanced Raman scattering in atomic vapors, Chin. Phys. B 25, 124206 (2016).
Atom-light hybrid interferometer, Physical Review Letters, 115, 043602 (2015)
Extracting the phase information from atomic memory by intensity correlation measurement, Optical Express 23, 10009 ( 2015).
SU(1,1)-type light-atom-correlated interferometer, Physical Review A 92? 023847 (2015).
Phase sensitive Raman process with correlated seeds, Applied Physics Letters, 106, 111103 (2015).
Suppression of the four-wave-mixing background noise in a quantum memory retrieval process by channel blocking, Physical Review A 90, 033823 (2014).
Mirrorless parametric oscillation in an atomic Raman process, Physical Review A 89, 063826 (2014).
L. Q. Chen, Guo-Wan Zhang, Cheng-ling Bian, Chun-Hua Yuan, Z. Y. Ou, Weiping Zhang, Phys. Rev. Lett. 105, 133603 (2010).
Bing Chen, Kai Zhang, Chengling Bian, Cheng Qiu, Chun-Hua Yuan, L. Q. Chen*, Z. Y. Ou, and Weiping Zhang, Optics Express, 21, 010490(2013)
Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, Weiping Zhang, Physical Review A 87? 053835 (2013)
Bian Cheng-Ling, Chen Li-Qing, Zhang Guo-Wan, Ou Z. Y., Zhang Weiping, Europhysics Letters, 97, 34005 (2012).
Zhifan Zhou, Cunjin Liu, Yami Fang, Jun Zhou, Ryan T. Glasser, Liqing Chen, Jietai Jing and Weiping Zhang,Appl. Phys. Lett.101,191113 (2012).
Guowan Zhang, Chenglin Bian, L Q Chen, Z Y Ou and Weiping Zhang, New J. Phys. 14 063034 (2012).
L. Q. Chen, Guo-Wan Zhang, Cheng-ling Bian, Z. Y. Ou, and Weiping Zhang, Optical Letters. 36, 2740 (2011).
Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, Weiping Zhang, Physical Review A 83, 054302 (2011).
L. Q. Chen, Cheng-ling Bian, Guo-Wan Zhang, Z. Y. Ou, Weiping Zhang, Physical Review A 82, 033832 (2010).
Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, Weiping Zhang, Physical Review A 82, 013817 (2010).
L. Q. Chen, G. -W. Zhang, C. -H. Yuan, J. Jing, Z. Y. Ou, and W. P. Zhang. Applied Physical Letters 95, 041115 (2009).
Chun-Hua Yuan, L. Q. Chen, and Weiping Zhang, Physical Review A 79, 052342 (2009).
Shuo Jiang, Xiao-Ming Luo, L.Q.Chen, et al, Physical Review A 80, 062303 (2009).