当前位置: X-MOL首页全球导师 海外导师 › Wang, Sihong

个人简介

EDUCATION: 2015-2018 Postdoc, Chemical Engineering Stanford University 2009-2014 Ph.D., Materials Science and Engineering Georgia Institute of Technology 2009-2014 Minor: Electrical Engineering 2005-2009 B.S., Materials Science and Engineering Tsinghua University HONORS: 2023 ACS Polymeric Material Science and Engineering (PMSE) Young Investigator Award 2023 Fellow of the International Association of Advanced Materials (IAAM) 2022 NSF CAREER Award 2022 Highly Cited Researcher by Clarivate Analytics 2022 NIH Director’s New Innovator Award 2022 Advanced Materials Rising Star Award 2021 iCANX Young Scientist Award 2021 Highly Cited Researcher by Clarivate Analytics 2021 Office of Naval Research (ONR) Young Investigator Award 2020 Highly Cited Researcher by Clarivate Analytics 2020 MIT Technology Review 35 Innovators Under 35 (TR35, Global List) 2017 Material Research Society Postdoc Travel Award 2014 Material Research Society Graduate Student Award 2014 Chinese Government Award for Outstanding Self-Financed Students Abroad 2014 Certificate of Merit for the oral presentation at 247th ACS National Meeting 2013 Poster Competition Award in Southeast Regional Energy Symposium 2013 1st Place in the Poster Competition of School of Materials Science and Engineering, Georgia Tech 2012 Self-charging power cell selected as the Top 10 Breakthroughs in Physics Science for 2012 by Physics World

研究领域

For both biomedical engineering and fundamental biological studies, electronic devices constitute one of the most important tool-sets. In order to address more complicated health conditions and diseases, a new generation of electronics that can be seamlessly merged with human bodies/tissues to realize long-term stable and independent operations is highly desired, which requires both biomechanically-adaptive formfactors (i.e. soft and stretchable) and biomechanically-powered energy supplies. Therefore, this new technology for future bioelectronics will be based on new types of tissue-like materials, and guided by fundamental understandings at the interface of semiconductor physics, solid mechanics and energy sciences. 1. Intrinsically stretchable electronic materials Skin-like electronics capable of seamless attachment on human skin or within the body are highly desirable for applications such as health monitoring, medication therapy, implantable medical devices, and biological studies. An desirable path towards this is to use polymer materials to impart intrinsic stretchability onto electronics, which could potentially afford high mechanical deformability, improved skin compatibility, and high device density. As the ground-breaking development for stretchable semiconductors, we have explored a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, the fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. As for stretchable conductors, we have been able to impart highly stretchability onto graphene electrode, by creating graphene nanoscrolls in between stacked graphene layers, so that its extraordinary electronic properties can be taken advantage of in stretchable electronics. 2. Intrinsically stretchable polymer devices Despite the development of intrinsically stretchable electronic materials, the realization of functional intrinsically stretchable electronics have is restricted by the lack of a scalable fabrication technology for intrinsically stretchable polymer devices, especially transistor arrays as the device building-block for electronics. We developed a fabrication process that enables high yield and uniformity, and is applicable to a variety of intrinsically stretchable polymer electronic materials. We demonstrated the first intrinsically stretchable polymer transistor array, with an unprecedented device density. The constituent transistors have an average mobility comparable to that of amorphous silicon and showed only small variations within one order of magnitude when subjected to 100% strain for 1000 cycles. Taken together, the developed transistor arrays enabled the first demonstration of intrinsically stretchable skin electronics, including an active matrix for sensing arrays as well as analog and digital circuit elements. More importantly, this fabrication process constitutes a general platform for incorporation of other intrinsically stretchable polymer materials toward the fabrication of next-generation stretchable skin electronic devices. This research provides the technological platform for intrinsically stretchable electronics. 3. Nanogenerators for bio-mechanical energy harvesting The fundamental sciences and applicable technologies for harvesting environmental energy are not only essential in realizing the self-powered electronic systems, also tremendously helpful in meeting the rapid-growing world-wide electronic energy consumptions. Mechanical energy is one of the most universally-existing, diversely-presenting, but usually-wasted energies in the natural environment. We developed triboelectric nanogenerators as a new technology for mechanical energy harvesting, which can efficiently convert mechanical motions into electricity based on the coupling of triboelectrification and electrostatic induction. We also designed the electrochemical energy storage processes for nanogenerators, and proposed a new energy device concept–self-charging power cell, based on the hybridization with Li-ion batteries.

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design Y. Li, N. Li, W. Li, A. Prominski, S. Kang, Y. Dai, Y. Liu, H. Hu, S. Wai, S. Dai, Z. Cheng, Q. Su, P. Cheng, C. Wei, L. Jin, J. A. Hubbel, B. Tian, S. Wang Nature Communications, doi.org/10.1038/s41467-023-40191-3 (2023) High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence W. Liu*, C. Zhang*, R. Alessandri, B. T. Diroll, Y. Li, X. Fan, K. Wang, H. Cho, Y. Liu, Y. Dai, Q. Su, N. Li, S. Li, S. Wai, Q. Li, S. Shao, L. Wang, J. Xu, X. Zhang, D. V. Talapin., J. J. de Pablo, S. Wang Nature Materials, 22, 737-745 (2023) Technology Roadmap for Flexible Sensors Y. Luo, M. R. Abidian, J. H. Ahn, D. Akinwande, A. M. Andrews, M. Antonietti, Z. Bao, M. Berggren, C. A. Berkey, C. J. Bettinger, J. Chen, P. Chen, W. Cheng, X. Cheng, S. J. Choi, A. Chortos, C. Dagdeviren, R. H. Dauskardt, C. A. Di, M. D. Dickey, X. Duan, A. Facchetti, Z. Fan, Y. Fang, J. Feng, X. Feng, H. Gao, W. Gao, X. Gong, C. F. Guo, X. Guo, M. C. Hartel, Z. He, J. S. Ho, Y. Hu, Q. Huang, Y. Huang, F. Huo, M. M. Hussain, A. Javey, U. Jeong, C. Jiang, X. Jiang, J. Kang, D. Karnaushenko, A. Khademhosseini, D. H. Kim, I. D. Kim, D. Kireev, L. Kong, C. Lee, N. E. Lee, P. S. Lee, T. W. Lee, F. Li, J. Li, C. Liang, C. T. Lim, Y. Lin, D. J. Lipomi, J. Liu, K. Liu, N. Liu, R. Liu, Y. Liu, Y. Liu, Z. Liu, Z. Liu, X. J. Loh, N. Lu, Z. Lv, S. Magdassi,G. G. Malliaras, N. Matsuhisa, A. Nathan, S. Niu, J. Pan, C. Pang, Q. Pei, H. Peng, D. Qi, H. Ren, J. A. Rogers, A. Rowe, O. G. Schmidt, T. Sekitani, D. G. Seo, G. Shen, X. Sheng, Q. Shi, T. Someya, Y. Song, E. Stavrinidou, M. Su, X. Sun, K. Takei, X. M. Tao, B. C. Tee, A. V. Thean, T. Q. Trung, C. Wan, H. Wang, J. Wang, M. Wang, S. Wang, T. Wang, Z. L. Wang, P. S. Weiss, H. Wen, S. Xu, T. Xu, H. Yan, X. Yan, H. Yang, L. Yang, S. Yang, L. Yin, C. Yu, G. Yu, J. Yu, S. H. Yu, X. Yu, E. Zamburg, H. Zhang, X. Zhang, X. Zhang, X. Zhang, Y. Zhang, Y. Zhang, S. Zhao, X. Zhao, Y. Zhao, Y. Q. Zheng, Z. Zheng, T. Zhou, B. Zhu, M. Zhu, R. Zhu, Y. Zhu, Y. Zhu, G. Zou, X. Chen ACS Nano, (2023) A universal interface for plug-and-play assembly of stretchable devices Y. Jiang, S. Li, J. Sun, J. Huang, Y. Li, G. Zou, T. Salim, C. Wang, W. Li, H. Jin, J. Xu, S. Wang, T. Lei, X. Yan, W. Y. X. Peh, S.-C. Yen, Z. Liu, M. Yu, H. Zhao, Z. Lu, G. Li, H. Gao, Z. Liu, Z. Bao, X. Chen Nature, 614, 456-462 (2023) Intrinsically stretchable neuromorphic devices for on-body processing of health data with artificial intelligence S. Dai*, Y. Dai*, Z. Zhao*, F. Xia, Y. Li, Y. Liu, P. Cheng, J. Strzalka, S. Li, N. Li, Q. Su, S. Wai, W. Liu, C. Zhang, R. Zhao, J. J. Yang, R. Stevens, J. Xu, J. Huang, S. Wang Matter, 5, 3375-3390 (2022) Stretchable Redox-Active Semiconducting Polymers for High-Performance Organic Electrochemical Transistors Y. Dai*, S. Dai*, N. Li, Y. Li, M. Moser, J. Strzalka, A. Prominski, Y. Liu, Q. Zhang, S. Li, H. Hu, W. Liu, S. Chatterji, P. Cheng, B. Tian, I. McCulloch, J. Xu, S. Wang Advanced Materials, 34, 2201178 (2022) 35 challenges in materials science being tackled by PIs under 35(ish) in 2021 B. Aguado, L. J. Bray, S. Caneva, J.-P. C.-Baena, G. D. Martino, C. Fang, Y. Fang, P. Gehring, G. Grosso, X. Gu, P. Guo, Y. He, T. J. Kempa, M. Kutys, J. Li, T. Li, B. Liao, F. Liu, F. Molina-Lopez, A. Pickel, A. M. Porras, R. Raman, E. M. Sletten, Q. Smith, C. Tian, H. Wang, H. Wang, S. Wang, Z. Wang, G. Wehmeyer, L. Wei, Y. Yang, L. D. Zarzar, M. Zhao, Y. Zheng, S. Cranford Matter, 4, 3804-3810 (2021) A stretchable and strain-unperturbed pressure sensor for motion-interference-free tactile monitoring on skins Q. Su*, Q. Zou*, Y. Li*, Y. Chen*, S.-Y. Teng, J. T. Kelleher, R. Nith, P. Cheng, N. Li, W. Liu, S. Dai, Y. Liu, A. Mazursky, J. Xu, L. Jin, P. Lopes, S. Wang Science Advances, 7, eabi4563 (2021) A universal and facile approach for building multifunctional conjugated polymers for human-integrated electronics N. Li, Y. Dai, Y. Li, S. Dai, J.Strzalka, Q. Su, N. D. Oliveira, Q. Zhang, P. B. J. S. Onge, S. R.-Gagne, Y. Wang, X. Gu, J. Xu, S. Wang Matter, 4, 3015-3029, (2021) Implantable bioelectronics toward long-term stability and sustainability Y. Li*, N. Li*, N. D. Oliveira, S. Wang Matter, 4, 1125–1141, (2021) Observation of Stepwise Ultrafast Crystallization Kinetics of Donor−Acceptor Conjugated Polymers and Correlation with Field Effect Mobility S. Luo, N. Li, S. Zhang, C. Zhang, T. Qu, M. U. Ocheje, G. Xue, X. Gu, S. Rondeau-Gagné, W. Hu, S. Wang, C. Teng, D. Zhou, J. Xu Chemistry of Materials, 33, 5, 1637–1647, (2021) Strain-insensitive intrinsically stretchable transistors and circuits W. Wang*, S. Wang, R.Rastak, Y. Ochiai, S. Niu, Y. Jiang, P. K. Arunachala, Y. Zheng, J. Xu, N. Matsuhisa, X. Yan, S.-K. Kwon, M. Miyakawa, Z. Zhang, R. Ning, A. M. Foudeh, Y. Yun, C. Linder, J. B.-H. Tok & Z. Bao Nature Electronics, 4, 143–150, (2021) Stretchable transistors and functional circuits for human-integrated electronics Y. Dai*, H. Hu*, M. Wang, J. Xu, S. Wang Nature Electronics, 4, 17, (2021). Building the Nexus Between Electronics and the Human Body for Enhanced Health S. Wang The Bridge (National Academy of Engineering). 50, 157 (2020). The 50th anniversary special issue, invited essay. A wireless body area sensor network based on stretchable passive tags S. Niu, N. Matsuhisa, L. Beker, J. Li, S. Wang, J. Wang, Y. Jiang, X. Yan, Y. Yun, W. Burnett, A. S. Y. Poon, J. B.-H. Tok, X. Chen & Z. Bao Nature Electronics, 2, 361, (2019). Inkjet-printed Stretchable and Low Voltage Synaptic Transistor Array F. Molina-Lopez, T. Z. Gao, U. Kraft, C. Zhu, T. Öhlund, R. Pfattner, V. R. Feig, Y. Kim, S. Wang, Y. Yun & Z. Bao Nature Communications, 10, 2676, (2019). Multi-scale Ordering in Highly Stretchable Polymer Semiconducting Films J. Xu, H.-C. Wu, C. Zhu, A. Ehrlich, L. Shaw, M. Nikolka, S. Wang, F. Molina-Lopez, X. Gu, S. Luo, D. Zhou, Y.-H. Kim, G.-J. N. Wang, K. Gu, V. R. Feig, S. Chen, Y. Kim, T. Katsumata, Y.-Q. Zheng, H. Yan, J. W. Chung, J. Lopez, B. Murmann & Z. Bao Nature Materials, 18, 594, (2019). Nonhalogenated Solvent Processable and Printable High-Performance Polymer Semiconductor Enabled by Isomeric Nonconjugated Flexible Linkers G.-J. N. Wang , F. Molina-Lopez, H. Zhang, J. Xu, H.-C. Wu , J. Lopez, L. Shaw , J. Mun, Q. Zhang, S. Wang, A. Ehrlich, Z. Bao Macromolecules, 51, 4976, (2018). Skin-Inspired Electronics: An Emerging Paradigm S. Wang*, J. Y. Oh*, J. Xu*, H. Tran, Z. Bao Accounts of Chemical Research, 51, 1033, (2018). Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes X. Yan*, Z. Liu*, Q. Zhang*, J. Lopez, H. Wang, H.-C. Wu, S. Niu, H. Yan, S. Wang, T. Lei, J. Li, D. Qi, P. Huang, J. Huang, Y. Zhang, Y. Wang, G. Li, J. B-H Tok, X. Chen, Z. Bao Journal of the American Chemical Society, 140, 5280, (2018). Skin electronics from scalable fabrication of an intrinsically stretchable transistor array S. Wang*, J. Xu*, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, S. Niu, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B.-H. Tok, Z. Bao Nature, 555, 83, (2018). Ultra-transparent and stretchable graphene electrodes N. Liu*, A. Chortos*, T. Lei*, L. Jin, T.R. Kim, W.-G. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, C. Linder, R. Sinclair, Z. Bao Science Advances, 3, e1700159, (2017). Highly stretchable polymer semiconductor films through the nanoconfinement effect J. Xu*, S. Wang*, G.-J. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig, J.W.F. To, S. Rondeau-Gagné, J. Park, B. C. Schroeder, C. Lu, J. Y. Oh, Y. Wang, Y.-H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B.-H. Tok, J. W. Chung, Z. Bao Science, 355, 59, (2017). Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators S. Li*, J. Wang*, W. Peng*, L. Lin, Y. Zi, S. Wang, G. Zhang, Z. L. Wang Advanced Energy Materials, 7, 1602832, (2017). Effective energy storage from triboelectric nanogenerators Y. Zi*, J. Wang*, S. Wang*, S. Li, Z. Wen, H. Guo, Z. L. Wang Nature Communications, 7, 10987, (2016). Molecular surface functionalization to enhance power output of triboelectric nanogenerators S. Wang*, Y. Zi*, Y. S. Zhou, S. Li, F. Fan, L. Lin, Z. L. Wang Journal of Materials Chemistry A, 4, 3728, (2016). A streaming potential/current based micro-fluidic direct-current generator for self-powered nanosystems R. Zhang*, S. Wang*, M.-H. Yeh*, C. Pan*, R. Yu, Y. Zhang, L. Lin, L. Zheng, Z. Jiao, Z. L. Wang Advanced Materials, 27, 6482, (2015). Self-powered triboelectric nanosensor for microfluidics and cavity-confined solution chemistry X. Li*, M.-H. Yeh*, Z.-H. Lin, H. Guo, P.-K. Yang, J. Wang, S. Wang, R. Yu, T. Zhang, Z. L. Wang ACS Nano, 9, 11056, (2015). A flexible fiber-based supercapacitor–triboelectric nanogenerator power system for wearable electronics J. Wang*, X. Li*, Y. Zi, S. Wang, Z. Li, L. Zheng, F. Yi, S. Li, Z. L. Wang Advanced Materials, 27, 4830, (2015). Largely improving the robustness and lifetime of triboelectric nanogenerators through automatic transition between contact and noncontact working states S. Li*, S. Wang*, Y. Zi, Z. Wen, L. Lin, G. Zhang, Z. L. Wang ACS Nano, 9, 7479, (2015). Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell Y.-S. Kim, Y. Xie, X. Wen, S. Wang, S. J. Kim, H.-K. Song, Z. L. Wang Nano Energy, 14, 77, (2015). Theory of freestanding triboelectric-layer-based nanogenerators S. Niu*, Y. Liu*, X. Chen*, S. Wang, Y. S. Zhou, L. Lin, Y. Xie, Z. L. Wang Nano Energy, 12, 760, (2015). Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing Y. Zi*, L. Lin*, J. Wang, S. Wang, J. Chen, X. Fan, P.-K. Yang, F. Yi, Z. L. Wang Advanced Materials, 27, 2340, (2015). Optimization of triboelectric nanogenerator charging systems for efficient energy harvesting and storage S. Niu, Y. Liu, Y. S. Zhou, S. Wang, L. Lin, Z. L. Wang IEEE Transactions on Electron Devices, 62, 641, (2015). Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ∼55% L. Lin*, Y. Xie*, S. Niu, S. Wang, P.-K. Yang, Z. L. Wang ACS Nano, 9, 922, (2015).

推荐链接
down
wechat
bug