个人简介
谢芳博士,理工科技学部数据科学与大数据技术专业助理教授。获华中师范大学数学与应用数学专业学士学位,澳门大学概率与数理统计专业硕士和博士学位,武汉大学和德国波鸿鲁尔大学博士后研究员,现任北师港浸大理工科技学部数据科学与大数据技术专业助理教授。已在国际统计和人工智能学术期刊上发表多篇SCI论文,主要的研究领域包括深度学习理论和高维统计理论及其应用。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Taheri, M., Xie, F., Lederer, J. (2021). Statistical guarantees for regularized neural networks. Neural Networks, 142, 148-161.
Huang, S.-T., Xie, F., Lederer, J. (2021). Tuning-free ridge estimator for high-dimensional generalized linear models. Computational Statistics & Data Analysis, 159, 107205.
Xie, F., Lederer, J. (2021). Aggregating knockoffs for false discovery rate control with an application to gut microbiome data. Entropy, 23(2), 230.
Xie, F., Xiao, Z. (2020). Consistency of l1 penalized negative binomial regressions. Statistics & Probability Letters, 165, 108816.
Jia, J., Xie, F., Xu, L. (2019). Sparse Poisson regression with penalized weighted score function. Electronic Journal of Statistics, 13(2), 2898-2920.
Xie, F., Xiao, Z. (2018). Square root lasso for sparse linear system with weakly dependent errors. Journal of Time Series Analysis, 39(2), 212-238.
Xie, F., Xu, L., Yang, Y. (2017). Lasso for sparse linear regression with exponentially beta-mixing errors. Statistics & Probability Letters. 125, 64-70.