当前位置: X-MOL首页全球导师 国内导师 › 菲立普·希阿雷

个人简介

菲立普·希阿雷教授是国际知名的数学家,尤其是对有限元法数学分析、弹性、塔板及板壳的数学理论,与应用微分几何的研究有很大的贡献。 希阿雷教授于1966年在美国俄亥俄州克里夫兰市凯斯理工学院获得博士学位。回到巴黎后,他当上了道路和桥梁中央实验室数学部的主管。1971年,他获得法国巴黎大学国家博士学位。1974年,他加入了巴黎皮埃尔和玛丽·居里大学任教授一职。2002年他受聘香港城市大学为大学杰出教授。 希阿雷教授的研究兴趣包括数值分析,有限元法,偏微分方程,应用微分几何三维弹性板和薄壳理论的数学模型。除了已经发表了超过200篇研究论文,他还编写了17本书,包括知名的,《椭圆问题有限元方法》,《数值线性代数与优化慨论》,《数学弹性》,和《线性和非线性泛函分析与应用》 等等。 希阿雷教授获法国国家荣誉勋章,是法国科学院院士,法国技术学院院士,欧洲学会的会员,欧洲科学院院士,罗马尼亚科学院院士,世界科学院院士,印度科学院院士,中国科学院外籍院士,香港科学会会员,工业与应用数学学会员,美国数学协会会员,香港科学院创院院士。除了是许多国家及地区科学院的成员外,希阿雷教授也获得多个奖项:包括法国科学院的蓬斯莱奖和谢菲奖,圣地亚哥德孔波斯特拉大学的金章奖,德国洪堡亚历山大研究奖,及上海国际科技合作奖。他也取得了13所大学的荣誉博士学位及名誉教授名衔。

研究领域

数值分析,有限元法,偏微分方程,应用微分几何三维弹性板和薄壳理论的数学模型

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

CIARLET, P.G. ; SCHULTZ, M.H. ; VARGA, R.S. Numerical methods of high-order accuracy for nonlinear boundary value problems. I. One dimensional problem, Numer. Math. 9 (1967), 394—430. CIARLET, P.G. Some results in the theory of nonnegative matrices, Linear Algebra and Appl. I (1968), 139—152. CIARLET, P.G. ; SCHULTZ, M.H. ; VARGA, R.S. Numerical methods of high-order accuracy for nonlinear two-point boundary value problems, in Programmation en Mathématiques Numériques (Actes d’un Colloque International du C.N.R.S., Besan?on, France, Sept. 7—14, 1966), pp. 217—225, C.N.R.S., Paris, 1968. CIARLET, P.G. ; SCHULTZ, M.H. ; VARGA, R.S. Numerical methods of high-order accuracy for nonlinear boundary value problems. II. Nonlinear boundary conditions, Numer. Math. 11 (1968), 331—345. CIARLET, P.G. ; SCHULTZ, M.H. ; VARGA, R.S. Numerical methods of high-order accuracy for nonlinear boundary value problems. III. Eigenvalue problems., Numer. Math. 12 (1968), 120—133. CIARLET, P.G. An 0(h2) method for a non-smooth boundary value problem, Aequationes Math. 2 (1968), 39—49. CIARLET, P.G. ; SCHULTZ, M.H. ; VARGA, R.S. Numerical methods of high-order accuracy for nonlinear boundary value problems. IV. Periodic boundary conditions, Numer. Math. 12 (1968), 266—279. CIARLET, P.G. ; SCHULTZ, M.H. ; VARGA, R.S. Numerical methods of high-order accuracy for nonlinear boundary value problems. V. Monotone operator theory, Numer. Math. 13 (1969), 51—77. CIARLET, P.G. ;WAGSCHAL, C. Approximation polyn?miale sur des n-simplexes, C. R. Acad. Sci. Paris Sér. A-B. 270 (1970), 665—668. CIARLET, P.G. ; NATTERER, F. ; VARGA, R.S. ; Numerical methods of high-order accuracy for singular nonlinear boundary value problems, Numer. Math. 15 (1970), 87—99. CIARLET, P.G. Discrete variational Green’s function. I, Aequationes Math. 4 (1970), 74—82. CIARLET, P.G. Discrete maximum principe for finite-difference operators, Aequationes Math. 4 (1970), 338—352. CIARLET, P.G. ; VARGA, R.S. Discrete variational Green’s function. II. One dimensional problem, Numer. Math. 16 (1970), 115—128. CIARLET, P.G. ; WAGSCHAL, C. Multipoint Taylor formulas and applications to the finite element method, Numer. Math. 17 (1971), 84—100. CIARLET, P.G. ; RAVIART, P.A. Interpolation de Lagrange dans Rn, C. R. Acad. Sci. Paris Sér. A-B. 273 (1971), 578—581. CIARLET, P.G. ; RAVIART, P.A. Interpolation de Lagrange sur des éléments finis courbes dans Rn, C. R. Acad. Sci. Paris Sér. A-B. 274 (1972), 640—643. CIARLET, P.G. ; RAVIART, P.A. General Lagrange and Hermite interpolation in Rn with applications to finite elements methods, Arch. Rational Mech. Anal. 46 (1972), 177—199. CIARLET, P.G. ; RAVIART, P.A. Interpolation theory over curved elements, with applications to finite element methods, Comp. Methods in Appl. Mech. and Engineering 1 (1972), 217—249. CIARLET, P.G. ; RAVIART, P.A. The combined effect of curved boundaries and numerical integration in isoparametric finite element methods, in The Mathematical Foundations of the Finite Element Method 1 with Applications to Partial Differential Equations (A.K. AZIZ, Editor) (Proceeding of a Symposium, University of Maryland, Baltimore, Maryland, June 26-30, 1972), pp. 409—474, Academic Press, New York, 1972. CIARLET, P.G. ; RAVIART, P.A. Maximum principle and uniform convergence for the finite element method, Comp. Methods in Appl. Mech. and Engineering 2 (1973), 17—31. CIARLET, P.G. Orders of convergence in finite element methods, in The Mathematics of Finite Elements and Applications (J.R. WHITEMAN, Editor) (Proceedings of a Conference, Brunel University, Uxbridge, 1972), pp. 113—129, Academic Press, London, 1973. CIARLET, P.G. Conforming and nonconforming finite element methods for solving the plate problem, in Conference on the Numerical Solution of Differential Equations (University of Dundee, 1973), pp. 21—31, Lecture Notes in Mathematics, vol. 363, Springer-Verlag, Berlin, 1974. CIARLET, P.G. Quelques méthodes d’éléments finis pour le problème d’une plaque encastrée, Computing Methods in Applied Sciences and Engineering, Part 1 (R. GLOWINSKI and J.L. LIONS Editors) (Proceeding of an International Symposium, IRIA LABORIA, Versailles, December 17-21, 1973), pp. 156—176, Lectures Notes in Computer Science, vol. 10, Springer-Verlag, Berlin, 1974. CIARLET, P.G. ; GLOWINSKI, R. Sur la résolution numérique du problème de Dirichlet pour l’opérateur biharmonique, C. R. Acad. Sci. Paris Sér. A-B 279 (1974), 239—241. CIARLET, P.G. Sur l’élément de Clough et Tocher, Revue Fran?aise d’Automatique, Informatique et Recherche Opérationnelle (1974), R-2, 19—27. CIARLET, P.G. ; RAVIART, P.A. A mixed finite element method for the biharmonic equation, Mathematical Aspects of Finite Elements in Partial Differential Equations(C. de BOOR, Editor) (Proceedings of a Symposium, Mathematical Research Center, The University of Wisconsin, Madison, 1974), pp. 125—145, Academic Press, New York, 1974. CIARLET, P.G. ; GLOWINSKI, R. Dual iterative techniques for solving a finite element approximation of the biharmonic equation, Computer Methods in Applied Mechanics and Engineering 5 (1975), 277—295. CIARLET, P.G. Mise en oeuvre de la méthode des éléments finis pour les problèmes de coques, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1229—1232. CIARLET, P.G. Convergence des méthodes d’éléments finis conformes pour les problèmes de coques, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1299—1301. * CIARLET, P.G. Lectures on the Finite Element Method. Lectures on Mathematics and Physics, Vol. 49, Tata Institute of Fundamental Research, Bombay, 1975. BERNADOU, M. ; CIARLET, P.G. Théorème d’existence et d’unicité pour le modèle linéaire de coques de W.T. Koiter, C. R. Acad. Sci. Paris Sér. A 282 (1976), 793—795. CIARLET, P.G. Conforming finite element methods for the shell problem, in The Mathematics of Finite Elements and Applications II(J.R.WHITEMAN, Editor) (Proceedings of a Conference, Brunel University, 07-10 April, 1975), pp. 105—123, Academic Press, Londres, 1976. * CIARLET, P.G. Numerical Analysis of the Finite Element Method, Series “Séminaire de Mathématiques Supérieures”, Vol. 59, Presses de l’University of Montréal, Montréal, 1976. BERNADOU, M. ;CIARLET, P.G. Sur l’ellipticité du modèle linéaire de coque de W.T.Koiter, in Computing Methods in Applied Sciences and Engineering(R. GLOWINSKI and J.L. LIONS, Editors) (Comptes- Rendus du Deuxième Colloque International sur les Méthodes de Calcul Scientifique et Technique, IRIA, Versailles, 15-19 December 1975), pp. 89—136, Lectures Notes in Economics and Mathematical Systems, vol. 134, Springer-Verlag, Berlin, 1976. CIARLET, P.G. On questions of existence in shell theory, J. Indian Math. Soc. 40, 131—143, 1976. CIARLET, P.G. ; DESTUYNDER, P. Une justification du modèle biharmonique en théorie linéaire des plaques, C. R. Acad. Sc. Paris Sér. A 285 (1977), 851—854. * CIARLET, P.G. The Finite Element Method for Elliptic Problems, Series “Studies in Mathematics and its Applications”, North-Holland, Amsterdam, 1978. CIARLET, P.G. Interpolation error estimates for the reduced Hsieh-Clough-Tocher triangle, Math. Comp. 32 (1978), 335—344. CIARLET, P.G. Coques et éléments finis, in Functional Analysis and Numerical Analysis(H. Fujita, Editor) (Proceeding of the Japan-France Seminar, University of Tokyo and University of Kyoto, September 1976), pp. 55—70, Japan Society for the Promotion of Science, Tokyo, 1978. CIARLET, P.G. ; DESTUYNDER, P. Une justification d’un modèle non linéaire en théorie des plaques, C. R. Acad. Sci. Paris Sér. A 287 (1978), 33—36. CIARLET, P.G. ; DESTUYNDER, P. A justification of a nonlinear model in plate theory, Comp. Methods in Appl. Mech. and Engineering 17/18 (1979), 227—258. CIARLET, P.G. ; DESTUYNDER, P. Approximation of three-dimensional models by two-dimensional models in plate theory, in Energy Methods in Finite Element Analysis(R. GLOWINSKI ; E.Y. RODIN; O.C. ZIENKIEWICZ, Editors), pp. 33—45, John Wiley & Sons, U.S.A., 1979. CIARLET, P.G. Une justification des équations de von Kármán., C. R. Acad. Sci. Paris Sér. A 288 (1979), 469—472. CIARLET, P.G. ; DESTUYNDER, P. A justification of the two-dimensional linear plate model, J.Mécanique 18 (1979), 315—344. CIARLET, P.G. Derivation of the von Kármán equations from the two-dimensional elasticity, in Proceedings of the Fourth Symposium on Basic Problems on Numerical Mathematics(Plzen, September 4-8, 1978) (I. MAREK, Editor), pp. 37—49, 1979. CIARLET, P.G. ; KESAVAN, S. Approximation bidimensionnelle du problème de valeurs propres pour une plaque, C. R. Acad. Sci. Paris Sér. A 289 (1979), 579—582. CIARLET, P.G. Derivation of nonlinear plate models from three-dimensional elasticity, in Computational Methods in Nonlinear Mechanics(J.T. ODEN, Editor), pp. 185—203, North-Holland, Amsterdam, 1980. CIARLET, P.G. A justification of the von Kármán equations, Arch. Rational Mech. Anal. 73 (1980), 349—389. * CIARLET, P.G. ; RABIER, P. Les équations de von Kármán, Lectures Notes in Mathematics, Vol. 826, Springer-Verlag, Berlin, 1980. CIARLET, P.G. ; KESAVAN, S. Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory, Comp. Methods in Appl. Mech. and Engineering 26 (1981), 145—172. CIARLET, P.G. Two-dimensional approximations of three-dimensional models in nonlinear plate theory, in Finite Elasticity(D.E. CARLSON and R.T. SHIELD, Editors), pp. 123—141, Martinus Nijho., The Hague, 1982. * CIARLET, P.G. Introduction à l’Analyse Numérique Matricielle et à l’Optimisation, Masson, Paris, 1982. * CIARLET, P.G. ; THOMAS, J.M. Exercices d’Analyse Numérique Matricielle et d’Optimisation, Masson, Paris, 1982. (Second Edition: CIARLET, P.G. ; MIARA, B. ; THOMAS, J.M., Masson, Paris, 1986). CIARLET, P.G. Quelques remarques sur les problèmes d’existence en élasticité non linéaire, in Computing Methods in Applied Sciences and Engineering V (R. GLOWINSKI and J.L. LIONS, Editors), pp. 235—254, North-Holland, Amsterdam, 1982. CIARLET, P.G. ; GEYMONAT, G. Sur les lois de comportement en élasticité non linéaire compressible, C. R. Acad. Sc. Paris Sér. II, 295, (1982), 423-426. BERNADOU, M. ; CIARLET, P.G. ; HU, Jian-wei Sur la convergence des méthodes incrémentales en élasticité non linéaire tridimensionnelle, C. R. Acad. Sc. Paris Sér. I, 295 (1982), 639—642. BLANCHARD, D. ; CIARLET, P.G. A remark on the von Kármán equations, Comput. Meth. Appl. Mech. Engrg. 37 (1983), 79—82. BERNADOU, M. ; CIARLET, P.G. ; HU, J. On the convergence of incremental methods in finite elasticity, in Proceedings of the China-France Symposium on Finite Element Methods(FENG Kang and J.L. LIONS, Editors), pp. 113—128, Science-Press, Beijing, 1983. * CIARLET, P.G. Lectures on Three-Dimensional Elasticity, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, Vol. 71, Springer-Verlag, 1983. CIARLET, P.G. ; NE?AS, J. Problèmes unilatéraux en élasticité non linéaire tridimensionnelle, C. R. Acad. Sc. Paris Sér. I, 298 (1984), 189—192. BERNADOU, M. ; CIARLET, P.G. ; HU, Jian-wei On the convergence of the semi-discrete incremental method in nonlinear, three-dimensional, elastiticy, J. Elasticity 14 (1984), 425—440. CIARLET, P.G. ;NECAS, J. Unilateral problems in nonlinear, three-dimensional elasticity, Arch. Rational Mech. Anal. 87 (1985), 319—338. CIARLET, P.G. ; NECAS, J. Injectivité presque partout, auto-contact, et non-interpénétrabilité en élasticité non linéaire tridimensionnelle, C. R. Acad. Sc. Paris Sér. I, 301 (1985), 621—624. * CIARLET, P.G. élasticité Tridimensionnelle, Masson, Paris, 1985. CIARLET, P.G. ; PAUMIER, J.C. Une justification des équations de Marguerre-von Kármán pour les coques peu profondes, C. R. Acad. Sc. Paris Sér. I, 301 (1985), 857—860. CIARLET, P.G. ; PAUMIER, J.C. A justification of the Marguerre-von Kármán equations, Computational Mechanics 1 (1986), 177—202. CIARLET, P.G. ; NECAS, J. Injectivity and self-contact in nonlinear elasticity, Arch. Rational Mech. Anal. 97 (1987), 171—188. CIARLET, P.G. Recent progress in the two-dimensional approximation of three-dimensional plate models in nonlinear elasticity, in Numerical Approximation of Partial Differential Equations (E.L. ORTIZ, Editor) (Proceedings, International Symposium on Numerical Analysis, Polytechnic University of Madrid, September 17-19, 1985), pp. 3—19, 1987, North-Holland, Amsterdam. CIARLET, P.G. Finite-element approximation theory, in Finite Element Handbook(H. KARDESTUNCER, Editor in Chief, & D.H. NORRIE, Project Editor), pp. 1123—1154, McGraw-Hill, New York, 1987. CIARLET, P.G. ; LE DRET, H. ; NZENGWA, R. Modélisation de la jonction entre un corps élastique tridimensionnel et une plaque, C. R. Acad. Sci. Paris Sér. I, 305 (1987), 55—58. * CIARLET, P.G. Mathematical Elasticity, Vol. I : Three-Dimensional Elasticity, Series “Studies in Mathematics and its Applications”, North-Holland, Amsterdam, 1988. BOURQUIN, F. ; CIARLET, P.G. Modélisation des vibrations d’une multi-structure formée d’un corps élastique tridimensionnel et d’une plaque, C. R. Acad. Sc. Paris, Sér. I, 307 (1988), 435—438. CIARLET, P.G. Modeling and numerical analysis of junctions between elastic structures, in ICIAM’87 : Proceedings of the First International Conference on Industrial and Applied Mathematics, Paris, 29 juin - 3 juillet 1987 (J. Mc KENNA & R. TEMAM, Editors), pp. 62—74, SIAM, Philadelphia, 1988. CIARLET, P.G. ; LE DRET, H. Justification de la condition aux limites d’encastrement d’une plaque par une méthode asymptotique, C. R. Acad. Sci. Paris Sér. I, 307 (1988), 1015—1018. CIARLET, P.G. ; LE DRET, H. ; NZENGWA, R. Junctions between three-dimensional and two-dimensional linearly elastic structures, J. Math. Pures Appl., 68 (1989), 261—295. CIARLET, P.G. ; LE DRET, H. Justification of the boundary conditions of a clamped by an asymptotic analysis, Asymptotic Analysis, 2 (1989), 257—277. BOURQUIN, F. ; CIARLET, P.G. Modeling and justification of eigenvalue problems for junctions between elastic structures, J. Functional Analysis, 87 (1989), 392—427. CIARLET, P.G. A new class of variational problems arising in the modeling of elastic multi-structures, Numer. Math. 57 (1990), 547—560. * CIARLET, P.G. Plates and Junctions in Elastic Multi-Structures : An Asymptotic Analysis, Masson, Paris, & Springer-Verlag, Heidelberg, 1990. CIARLET, P.G. Review of “Boundary value problems of finite elasticity”, by T. Valent, Bulletin of the A.M.S. 23 (1990), 209—222. CIARLET, P.G. ; MIARA, B. Justification d’un modèle bidimensionnel de coque “peu profonde” en élasticité linéarisée, C. R. Acad. Sci. Paris Sér. I, 311 (1990), 571—574. * CIARLET, P.G. Basic error estimates for elliptic problems, in Handbook of Numerical Analysis (P.G. CIARLET & J.L. LIONS, Editors), Vol. II : Finite Element Methods (Part 1), pp. 17—351, North-Holland, Amsterdam, 1991. CIARLET, P.G. ; MIARA, B. Une démonstration simple de l’ellipticité des modèles de coques de W.T. Koiter et de P.M. Naghdi, C. R. Acad. Sci. Paris Sér. I, 312 (1991), 411—415. CIARLET, P.G. The method of asymptotic expansions for a nonlinearly elastic clamped plate, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, Vol. X (H. BREZIS & J.L. LIONS, Editors), pp. 146—190, Pitman Research Notes in Mathematics Series, Longman, Harlow, 1991. CIARLET, P.G. ; MIARA, B. Mathematical justification of linear shallow shell models by an asymptotic analysis, in Computing Methods in Applied Sciences and Engineering (Editor : R. GLOWINSKI), pp. 151—161, Nova Science Publishers, New York, 1991. CIARLET, P.G. ; MIARA, B. On the ellipticity of linear shell models, Z. angew. Math. Phys., 43 (1992), 243—253. CIARLET, P.G. ; MIARA, B. Justification of the two-dimensional equations of a linearly elastic shallow shell, Comm. Pure Appl. Math., XLV (1992), 327—360. CIARLET, P.G. échange de limites en théorie asymptotique de coques. I. En premier lieu, “la coque devient une plaque”, C. R. Acad. Sci. Paris Sér. I, 315 (1992), 107—111. CIARLET, P.G. échange de limites en théorie asymptotique de coques. II. En premier lieu, l’épaisseur tend vers zéro, C. R. Acad. Sci. Paris Sér. I, 315 (1992), 227—233. BOURQUIN, F. ; CIARLET, P.G. ; GEYMONAT, G. ; RAOULT, A. Gamma-convergence et analyse asymptotique des plaques minces, C. R. Acad. Sci. Paris Sér. I, 315 (1992), 1017—1024. CIARLET, P.G. ; SANCHEZ-PALENCIA, E. Un théorème d’existence et d’unicité pour les équations des coques membranaires, C. R. Acad. Sci. Paris Sér. I, 317 (1993), 801—805. CIARLET, P.G. Remarques sur la justification des modèles bi-dimensionnels de plaques et de coques par l’analyse asymptotique, in Les Grands Systèmes des Sciences et de la Technologie (J. HOROWITZ & J.L. LIONS, Coordinateurs), pp. 213—227, Masson, Paris, 1993. CIARLET, P.G. Modèles bi-dimensionnels de coques : analyse asymptotique et théorèmes d’existence, in Boundary Value Problems for Partial Differential Equations and Applications (J.L. LIONS & C. BAIOCCHI, Editors), pp. 61—80, Masson, Paris, 1993. CIARLET, P.G. Existence theory for linearly elastic shells, Proc. Indian Acad. Sci. (special issue in memory of Professor K.G. RAMANATHAN), 104 (1994), 269—278. CIARLET, P.G. ; LODS, V. Ellipticité des équations membranaires d’une coque uniformément elliptique, C. R. Acad. Sci. Paris Sér. I, 318 (1994), 195—200. CIARLET, P.G. ; LODS, V. Analyse asymptotique des coques linéairement élastiques. I. Coques “membranaires”, C. R. Acad. Sci. Paris Sér. I, 318 (1994), 863—869. CIARLET, P.G. ; LODS, V. ; MIARA, B. Analyse asymptotique des coques linéairement élastiques. II. Coques “en flexion”, C. R. Acad. Sci. Paris Sér. I, 319 (1994), 95—100. CIARLET, P.G. ; LODS, V. Analyse asymptotique des coques linéairement élastiques. III. Une justification du modèle de W.T. Koiter, C. R. Acad. Sci. Paris Sér. I, 319 (1994), 299—304. BERNADOU, M. ; CIARLET, P.G. ; MIARA, B. Existence theorems for two-dimensional linear shell theories, J. Elasticity, 34 (1994), 111—138. CIARLET, P.G. Mathematical shell theory: Recent developments and open problems, in Duration and Change: Fifty Years at Oberwolfach(M. ARTIN, H. KRAFT & R. REMMERT, Editors), pp. 159—176, Springer-Verlag, Berlin, 1994. CIARLET, P.G. ; SANCHEZ-PALENCIA, E. Ellipticity of bending and membrane shell equations, in Asymptotic Methods for Elastic Structures (P.G. CIARLET, L. TRABUCHO & J.M. VIA?O, Editors), pp. 31—39, de Gruyter, Berlin, 1995. CIARLET, P.G. ; LODS, V. Analyse asymptotique des coques linéairement élastiques. IV. Coques “membranaires sensitives”, C. R. Acad. Sci. Paris Sér. I, 321 (1995), 649-654. CIARLET, P.G. Mathematical modeling and numerical analysis of linearly elastic shells, in Proceedings of the International Congress of Mathematicians (Zürich, August 3-14, 1994), pp. 1420—1428, Birkhaüser, Basel, 1995. CIARLET, P.G. ; SANCHEZ-PALENCIA, E. An existence and uniqueness theorem for the two dimensional linear membrane shell equations, J. Math. Pures Appl.75 (1996), 51—67. CIARLET, P.G. ; LODS, V. On the ellipticity of linear membrane shell equations, J. Math. Pures Appl.,75 (1996), 107—124. BUSSE, S. ; CIARLET, P.G. ; MIARA, B. Coques “faiblement courbées” en coordonnées curvilignes, C. R. Acad. Sci. Paris Sér. I, 322 (1996), 1093—1098. CIARLET, P.G. Modélisation mathématique des coques linéairement élastiques, in Partial Differential Equations and Functional Analysis - In Memory of Pierre Grisvard(J. CéA, D. CHENAIS, G.GEYMONAT & J.-L. LIONS, Editors), pp. 60—79, Birkhaüser, Basel, 1996. CIARLET, P.G. ; LODS, V. Asymptotic analysis of linearly elastic shells. I. Justification of membrane shells equations, Arch. Rational Mech. Anal., 136 (1996), 119-161. CIARLET, P.G. ; LODS, V. ; MIARA, B. Asymptotic analysis of linearly elastic shells. II. Justification of flexural shells, Arch. Rational Mech. Anal., 136 (1996), 163-190. CIARLET, P.G. ; LODS, V. Asymptotic analysis of linearly elastic shells. III. A justification of Koiter’s shell equations, Arch. Rational Mech. Anal., 136 (1996), 191-200. CIARLET, P.G. ; LODS, V. Asymptotic analysis of linearly elastic shells : “Generalized membrane shells”, J. Elasticity, 43 (1996), 147—188. CIARLET, P.G. Asymptotic analysis of elastic shells, in Collection of Papers on Geometry, Analysis and Mathematical Physics in Honor of Professor GU Chao-hao (LI Ta-tsien, Editor), pp. 23-32, World Scientific, Singapore, 1997. BUSSE, S. ; CIARLET, P.G. ; MIARA, B. Justification d’un modèle linéaire bi-dimensional de coques “faiblement courbées” en coordonnées curvilignes, Modélisation Mathématique et Analyse Numérique, 31 (1997), 409-434. * CIARLET, P.G. Mathematical Elasticity, Vol. II: Theory of Plates, Series “Studies in Mathematics and its Applications”, North-Holland, Amsterdam, 1997. CIARLET, P.G. Asymptotic Analysis of elastic shells, in Shells: Mathematical Modelling and Scientific Computing (M. BERNADOU, P.G. CIARLET & J.M. VIA?O, Editors), pp. 59-62, Servicio de Publicacións da Universidade de Santiago de Compostela, 1997. CIARLET, P.G. ; COUTAND, D. Un théorème d’existence pour une coque non linéairement élastique “en flexion”, C. R. Acad. Sci. Paris Sér. I, 326 (1998), 903-907. CIARLET, P.G. Un lemme de J.-L. Lions et les inégalités de Korn sur les surfaces, in équations aux Dérivées Partielles et Applications. Articles Dédiés à Jacques-Louis Lions, pp. 357-382, Gauthier-Villars, Paris, 1998. CIARLET, P.G. ; COUTAND, D. An existence theorem for nonlinearly elastic “flexural” shells, J. Elasticity 50 (1998), 261-277. CIARLET, P.G. Justification des équations des coques minces linéairement élastiques, ESAIM : Proceedings, Actes du 30ème Congrès d’Analyse Numérique : CANum’98, 6 (1998), 13-17. CIARLET, P.G. Inequalities of Korn’s type on surfaces, in Il Problema di de Saint-Venant : Aspetti Teorici e Applicativi, pp. 105-134, Atti dei Convegni Lincei 140, Accademia Nazionale dei Lincei, Roma, 1998. * CIARLET, P.G. Introduction to Linear Shell Theory, Gauthier-Villars & Elsevier, Paris, 1998. CIARLET, P.G. ; COUTAND, D. A minimization problem arising in nonlinear shell theory, in Journées “équations aux Dérivés Partielles”, Saint-Jean de Monts, 1-4, Publications de l’University of Nantes, 1999. CIARLET, P.G. Existence theorems in nonlinear shell theory, Analele Stiintifice ale Univ. Constantza, Seria Matematica 7 (1999), 41-50. CIARLET, P.G. Existence de solutions en théorie non linéaire de coques minces, in “Journées Elie Cartan 1998 et 1999”, pp. 21-28, Publications de l’Institut Elie Cartan, No. 16, Université Henri Poincaré, Nancy, 2000. * CIARLET, P.G. Mathematical Elasticity, Vol. III: Theory of Shells, Collection “Studies in Mathematics and its Applications”, North-Holland, Amsterdam, 2000. CIARLET, P.G. ; GRATIE, L. équations de von Kármán généralisées, C. R. Acad. Sci. Paris Sér. I, 331 (2000), 329-335. CIARLET, P.G. ; MARDARE, S. Sur les inégalités de Korn en coordonnés curvilignes, C. R. Acad. Sci. Paris Sér. I, 331 (2000), 337-343. CIARLET, P.G. Un modèle bi-dimensionnel non linéaire de coque analogue à celui de W.T. Koiter, C. R. Acad. Sci. Paris Sér. I, 331 (2000), 405-410. CIARLET, P.G. ; ROQUEFORT, A. Justification d’un modèle bi-dimensionnel non linéaire de coque analogue à celui de W.T. Koiter, C. R. Acad. Sci. Paris Sér. I, 331 (2000), 411-416. CIARLET, P.G. ; LARSONNEUR, F. Sur la détermination d’une surface dans R3à partir de ses deux formes fondamentales, C. R. Acad. Sci. Paris Sér. I, 331 (2000), 893-897. CIARLET, P.G. ; GRATIE, L. ; SABU, N. Un théorème d’existence pour les équations de von Kármán généralisées, C. R. Acad. Sci. Paris Sér. I, 332 (2001), 669-676. CIARLET, P.G. ; ROQUEFORT, A. Justification of a two-dimensional nonlinear shell model of Koiter’s type, Chinese Ann. Math. Ser. B, 22 (2001), 129-144. CIARLET, P.G. ; GRATIE, L. Generalized von Kármán equations, J. Math. Pures Appl. 80 (2001), 263-279. CIARLET, P.G. Mathematical modeling of elastic thin shells, Acta Numerica (2001), 103-214. CIARLET, P.G. ; MARDARE, S. On Korn’s inequalities in curvilinear coordinates, Math. Models Methods Appl. Sci.11 (2001), 1379-1391. CIARLET, P.G. ; GRATIE, L. ; SABU, N. An existence theorem for generalized von Kármán equations, J. Elasticity 62 (2001), 239-248. CIARLET, P.G. Nonlinear shell models of Koiter’s type, in Mathematical Modeling and Numerical Simulation in Continuum Mechanics (I. BABU?KA, P.G. CIARLET, T. MIYOSHI, Editors), pp. 1-9, Lecture Notes in Computational Science and Engineering, Vol. 19, Springer, Heidelberg, 2002. CIARLET, P.G. ; LARSONNEUR, F. On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl. 81 (2002), 167-185. CIARLET, P.G., LAURENT, F. Up to isometries, a deformation is a continuous function of its metric tensor, C. R. Acad. Sci. Paris, Sér I, 335 (2002), 489-493. CIARLET, P.G. A surface is a continuous function of its two fundamental forms, C. R. Acad. Sci. Paris, Sér I, 335 (2002), 609-614. CIARLET, P.G.; Mathematical problems in shell theory, in Shell Structures-Theory and Applications (P. KLOSOWSKI, W. PIETRASZKIEWICZ, Editors), pp. 23-24, Gdansk University of Technology, Gdansk, 2002. CIARLET, P.G.; LAURENT, F. Continuity of a deformation as a function of its Cauchy-Green tensor, Arch. Rational Mech. Anal. 167 (2003), 255-269. CIARLET, P.G. Continuity of a surface as a function of its two fundamental forms, J. Math. Pures Appl. 82 (2003), 253-274. CIARLET, P.G. ; MARDARE, C. On rigid displacements and their relation to the infinitesimal rigid displacement lemma in three-dimensional elasticity, C.R. Acad. Sci. Paris, Sér. I, 336 (2003), 873-878. CIARLET, P.G.; MARDARE, C. On rigid displacements and their relation to the infinitesimal rigid displacement lemma in shell theory, C.R. Acad. Sci. Paris, Sér. I, 336 (2003), 959-966. CIARLET, P.G. A two-dimensional nonlinear shell model of Koiter's type, in Jean Leray '99 Conference Proceedings (M.de GOSSON, Editor), pp. 437-449, Kluwer, Dordrecht. CIARLET, P.G.; MARDARE, C. On rigid and infinitesimal rigid displacements in three-dimensional elasticity, Math. Models Methods Appl. Sci. 13 (2003), 1589-1598. CIARLET, P.G.; MARDARE, C. On rigid and infinitesimal rigid displacements in shell theory, J. Math. Pures Appl. 83 (2004), 1-15. CIARLET, P.G. ; MARDARE, C. On the recovery of a manifold with boundary in Rn, C. R. Acad. Sci. Paris, Sér. I 338 (2004), 333-340. CIARLET, P.G. ; MARDARE, C. Extension of a Riemannian metric with vanishing curvature, C. R. Acad. Sci. Paris, Sér. 338 (2004), 391-396. CIARLET, P.G. ; MARDARE, C. An estimate of the H1-norm of deformations in terms of the L1-norm of their Cauchy-Green tensors, C. R. Acad. Sci. Paris, Sér. I, 338 (2004), 505-510. CIARLET, P.G. ; MARDARE, C. Recovery of a manifold with boundary and its continuity as a function of its metric tensor, J. Math. Pures Appl. 83 (2004), 811-843. CIARLET, P.G. ; CIARLET, Jr., P. Another approach to linearized elasticity and Korn's inequality, C. R. Acad. Sci. Paris, Sér. I 339 (2004), 307-312. CIARLET, P.G. ; Nonlinear shell theory from a different perspective, in HERCMA 2003, Proceedings of the Sixth Hellenic-European Conference on Computer Mathematics and its Applications, Volume 1 (E.A. LIPITAKIS, Editor), pp. 46-47, LEA Publishers, Athens, 2004. CIARLET, P.G. ; MARDARE, C. Continuity of a deformation in H1 as a function of its Cauchy-Green tensor in L1, J. Nonlinear Sci. 14 (2004), 415-427. CIARLET, P.G.; CIARLET, Jr., P. Another approach to linearized elasticity and a new proof of Korn's inequality, Math. Models Methods Appl. Sci. 15 (2005), 259-271. CIARLET, P.G.; GRATIE, L. Another approach to linear shell theory and a new proof of Korn's inequality on a surface, C. R. Acad. Sci. Paris, Sér. I, 340 (2005), 471-478. CIARLET, P.G.; MARDARE, C. Recovery of a surface with boundary and its continuity as a function of its two fundamental forms, Analysis and Applications 3 (2005), 99-117. CIARLET, P.G. ; GRATIE, L. ; MARDARE, C. Continuity in H1-norms of surfaces in terms of the L1-norms of their fundamental forms, C. R. Acad. Sci. Paris, Sér. I , 341 (2005), 201-206. CIARLET, P.G. ; GRATIE, L. A new approach to linear shell theory, Math. Models Methods Appl. Sci. 15 (2005), 1181-1202. CIARLET, P.G. ; GRATIE, L. ; KESAVAN, S. Numerical analysis of the generalized von Kármán equations, C. R. Acad. Sci. Paris, Sér. I , 341 (2005), 695-699. * CIARLET, P.G. An Introduction to Differential Geometry, with Applications to Elasticity, Springer, Dordrecht, 2005. CIARLET, P.G. ; GRATIE, L. From the classical to the generalized von Kármán and Marguerre-von Kármán equations, J. Computational Appl. Math. 190 (2006), 470-486. CIARLET, P.G. ; GRATIE, L. ; MARDARE C. A nonlinear Korn inequality on a surface, J. Math. Pures Appl. 85 (2006), 2-16. CIARLET, P.G. ; GRATIE, L. On the existence of solutions to the generalized Marguerre-von Kármán equations, Math. Mech. Solids 11 (2006), 83-100. AMROUCHE, C. ; CIARLET, P.G. ; GRATIE, L. ; KESAVAN, S. New formulations of linearized elasticity problems, based on extensions of Donati's theorem, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 785-789. AMROUCHE, C. ; CIARLET, P.G. ; GRATIE, L. ; KESAVAN, S. On Saint Venant's compatibility conditions and Poincare's lemma, C. R. Acad. Sci. Paris, Ser. I, 342 (2006), 887-891. AMROUCHE, C. ; CIARLET, P.G. ; GRATIE, L. ; KESAVAN, S. On the characterizations of matrix fields as linearized strain tensor fields, J. Math. Pures Appl. 86 (2006), 116-132. CIARLET, P.G. ; GRATIE, L. : IOSIFESCU, O. ; MARDARE, C. ; VALLEE, C. Rotation fields and the fundamental theorem of Riemannian geometry in R3, C. R. Acad. Sci. Paris, Ser. I, 343 (2006), 415-421. CIARLET, P.G. ; CIARLET, JR. ; P. ; GEYMONAT, G. : KRASUCKI, F. Characterization of the Kernel of the operator CURL CURL, C. R. Acad. Sci. Paris, Ser. I, 344 (2007), 305-308. CIARLET, P.G. ; GRATIE, L. ; IOSIFESCU, O. ; MARDARE C. ; VALLEE, C. Another approach to the fundamental theorem of Riemannian geometry, by way of rotation fields, J. Math. Pures Appl. 87 (2007), 237-252. CIARLET, P.G. ; GRATIE, L. ; KESAVAN, S. On the generalized von Kármán equations and their approximation, Math. Models Methods Appl. Sci. 17 (2007), 617-633. CIARLET, P.G. ; GRATIE, L. ; MARDARE, C.; Ming SHEN, Recovery of a displacement field from its linearized strain tensor field in curvilinear coordinates, C. R. Aacad. Sci. Paris, Ser. I, 344 (2007), 535-540. CIARLET, P.G. ; GRATIE, L. ; MARDARE, C.; Ming SHEN, Recovery of a displacement field on a surface from its linearized change of metric and change of curvature tensors, C. R. Aacad. Sci. Paris, Ser. I, 344 (2007), 597-602. CIARLET, P.G. ; MARDARE, C; Ming SHEN, Saint Venant compatibility equations in curvilinear coordinates, Analysis and Applications (accepted). CIARLET, P.G. ; GRATIE, L. ; MARDARE, C. New compatibility conditions for the fundamental theorem of surface theory, C. R. Acad. Sci. Paris, Ser. I (accepted). CIARLET, P.G. Intrinsic methods in linear and nonlinear three-dimensional elasticity, in DMHF 2007: COE Conference on the Development of Dynamic Mathematics with High Functionality (M. T. NAKAO, Editor), pp.11-13, Kyushu University Press, Fukuoka, 2007. AMROUCHE, C.; CIARLET, P.G.; CIARLET, JR., P. Vector and scalar potentials, Poincaré's theorem and Korn's inequality, C. R. Acad. Sci. Paris, Ser. I, 345 (2007), 603-608. CIARLET, P.G. ; GRATIE, L. ; MARDARE, C.; Ming SHEN, Saint Venant compatibility equations on a surface - Application to intrinsic shell theory, Math. Models Methods Appl. Sci. 18 (2008), 165-194. CIARLET, P.G. An introduction to differential geometry in R3, in Differential Geometry: Theory and Applications (P. G. CIARLET and Ta-Tsien LI, Editors), pp.1-93, Series in Contemporary Mathematics, Vol.9, World Scientific, Singapore, 2008. CIARLET, P.G.; MARDARE, C. An introduction to shell theory, in Differential Geometry: Theory and Applications (P. G. CIARLET and Ta-Tsien LI, Editors), pp.94-184, Series in Contemporary Mathematics, Vol.9, World Scientific, Singapore, 2008. CIARLET, P.G.; P. CIARLET, Jr. A new approach for approximating linear elasticity problems, C. R. Acad. Sci. Paris, Ser. I, 346 (2008), 351-356. CIARLET, P.G. ; GRATIE, L. ; MARDARE, C. A new approach to the fundamental theorem of surface theory, Arch. Rational Mech. Anal. 188 (2008), 457-474. CIARLET, P.G. A brief introduction to mathematical shell theory, in Classical and Advanced Theories of Thin Structures: Mechanical and Mathematical Aspects (A. MORASSI & R. PARONI, Editors), pp.111-185, Springer, Wien, 2008. CIARLET, P.G. ; GRATIE, L. ; SERPILLI, M. Explicity reconstruction of a displacement field on a surface by means of its linearized change of metric and change of curvature tensors, C.R. Acad. Sci. Paris, Ser. I, 346 (2008), 1113-1117. CIARLET, P.G. ; IOSIFESCU, O. Justification of the Darboux-Vallée-Fortuné compatibility relation in the theory of surfaces, C.R. Acad. Paris, Ser. I, 346 (2008), 1197-1202. CIARLET, P.G. ; GRATIE, L. ; MARDARE, C. Intrinsic methods in elasticity: A mathematical survey, Discrete and Continuous Dynamical Systems 23 (2009), 133-164. CIARLET, P.G. ; GRATIE, L. ; SERPILLI, M. Cesáro-Volterra path integral formula on a surface, Math. Models Methods Appl. Sci. 19 (2009), 419-441. CIARLET, P.G. ; O. IOSIFESCU, A new approach to the fundamental theorem of surface theory, by means of the Darboux-Vallée-Fortuné compatibility relations, J. Math. Pures Appl. 91 (2009), 384-401. CIARLET, P.G. ; GRATIE, L. ; MARDARE, C. A generalization of the classical Cesáro-Volterra path integral formula, C. R. Acad. Sci. Paris, Ser. I, 347 (2009), 577-582. CIARLET, P.G. ; MARDARE, C. The pure displacement problem in nonlinear three-dimendional elasticity: intrinsic formulation and existence theorems, C. R. Acad. Sci. Paris, Ser. I, 347 (2009), 677-683. CIARLET, P.G. ; CIARLET, Jr., P. Direct computation of stresses in planar linearized elasticity, Math. Models Methods Appl. Sci. 19 (2009), 1043-1064. CIARLET, P.G. ; GRATIE, L. ; MARDARE, C. A Cesáro-Volterra formula with little regularity, J. Math. Pures Appl. 93 (2010), 41-60. AMROUCHE, C.; CIARLET, P.G. ; CIARLET, Jr., P. Weak vector and scalar potentials. Application to Poincaré theorem and Korn's inequality in Sobolev spaces with negative exponents, Analysis and Applications 8 (2010), 1-17. CIARLET, P.G. ; CIARLET, Jr., P. ; IOSIFESCU, O. ; SAUTER S. ; ZOU J. A Lagrangian approach to intrinsic linearized elasticity, C.R. Acad. Sci. Paris, Ser. I, 348 (2010), 587-592. CIARLET, P.G. ; MARDARE, C. Existence theorems in intrinsic nonlinear elasticity, J. Math. Pures Appl. 94 (2010), 229-243. CIARLET, P.G. On Korn's inequality, Chinese Ann. Math., Ser B 31 (2010), 607-618. CIARLET, P.G. ; DINCA, G., A Poincaré inequality in a Sobolev space with variable exponent, Chinese Ann. Math., Ser. B 32 (2011), 333-342. CIARLET, P.G. ; P. CIARLET, JR.; O IOSIFESCU: S. SAUTER; J. ZOU, Lagrange multipliers in intrinsic elasticity, Math. Models Methods Appl. Sci. 21 (2011), 651-666. CIARLET, P.G. ; GEYMONAT, G.; KRASUCKI, F., Legendre - Fenchel duality in elasticity, C. R. Acad. Sci. Paris, Ser. I 349 (2011), 597-602. CIARLET, P.G. ; GOGU, R.; MARDARE, C., A notion of polyconvex function on a surface suggested by nonlinear shell theory, C. R. Acad. Sci. Paris, Ser. I 349 (2011), 1207-1211. CIARLET, P.G. ; MARDARE, S., Nonlinear Saint-Venant compatibility conditions for nonlinearly elastic plates, C. R. Acad. Sci. Paris, Ser. I 349 (2011), 1297-1302. CIARLET, P.G. , Korn's inequalities: the linear vs. the nonlinear case, Discrete and Continuous Dynamical Systems - Series S 5 (2012), 473-483. CIARLET, P.G. ; MARDARE, S. , An intrinsic approach and a notion of polyconvexity for nonlinearly elastic plates, C. R. Acad. Sci. Paris, Ser. I , 350 (2012), 111-116. CIARLET, P.G. ; GEYMONAT, G.; KRASUCKI, F., A new duality approach to elasticity, Math. Models Methods Appl. Sci. 22 (2012), 1150003 (21 pages). CIARLET, P.G. ; MARDARE, C. , On the Newton-Kantorovich theorem, Analysis and Applications, 10 (2012), 249-269. CIARLET, P.G. ; GOGU, R. ; MARDARE, C., Orientation-preserving condition and polyconvexity on a surface-Application to nonlinear shell theory, J. Math. Pures Appl. 99 (2013), 704-725. CIARLET, P.G. ; MARDARE, C., Expression of Dirichlet boundary conditions in terms of the Cauchy-Green tensor field, C.R. Acad. Sci. Paris, Ser. I, 351 (2013), 323-327. CIARLET, P.G. ; MARDARE, C., Expression of Dirichlet boundary conditions in terms of the strain tensor in linearized elasticity, C.R. Acad. Sci. Paris, Ser. I, 351 (2013), 329-334. CIARLET, P.G. ; DINCA, G. ; MATEI, P., Fréchet differentiability of the norm in a Sobolev space with a variable exponent, Analysis and Applications 11 (2013), 1350012 (31 pages). CIARLET, P.G. ; GEYMONAT, G. ; KRASUCKI, F., Nonlinear Donati compatibility conditions for the nonlinear Kirchhoff-von Kármán-Love plate theory, C.R. Acad. Sci. Paris, Ser. I, 351 (2013), 405-409. CIARLET, P.G. ; DINCA, G. ; MATEI, P., Operator equations and duality mappings in Sobolev spaces with variable exponents, Chinese Ann. Math., Ser.B 34 (2013), 639-666. CIARLET, P.G. ; MARDARE, S., Nonlinear Saint-Venant compatibility conditions and the intrinsic approach for nonlinearly elastic plates, Math. Models Methods Appl. Sci. 23 (2013), 2293-2321. * CIARLET, P.G., Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013. CIARLET, P.G. ; IOSIFESCU, O., Green's formulas with little regularity on a surface - Application to Donati-like compatibility conditions on a surface, C.R. Acad. Sci. Paris, Ser. I, 351 (2013), 853-858. CIARLET, P.G. ; IOSIFESCU, O., The space H(div,·) on a surface - Application to Donati-like compatibility conditions on a surface, C.R. Acad. Sci. Paris, Ser. I, 351 (2013), 943-947. CIARLET, P.G. ; MARDARE, C., Boundary conditions in intrinsic nonlinear elasticity, J Math. Pures Appl.101 (2014), 458-472. CIARLET, P.G. ; MARDARE, C., Intrinsic formulation of the displacement-traction problem in linearized elasticity, Math. Models Methods Appl. Sci. 24 (2014), 1197-1216. CIARLET, P.G. ; IOSIFESCU, O., Donati compatibility conditions on a surface - Application to shell theory, J. Math. Pures Appl.102 (2014), 173-202. AMROUCHE, C.; CIARLET, P.G.; MARDARE, C., Remarks on a lemma of J. L. Lions, C.R. Acad. Sci. Paris, Ser. I 352 (2014), 691-695. CIARLET, P.G. ; GEYMONAT, G.; KRASUCKI, F., Nonlinear Donati compatibility conditions and the intrinsic approach for nonlinearly elastic plates, J. Math. Pures Appl. 103 (2015), 255-268. CIARLET, P.G.; HOU Yifeng; MARDARE, C., New identity and Korn's inequalities on a surface, C.R. Acad. Sci. Paris, Ser. I 353 (2015), 369-374. AMROUCHE, C.; CIARLET, P.G.; MARDARE, C., On a lemma of Jacques-Louis Lions and its relation to other fundamental results, J. Math. Pures Appl. 104 (2015), 207-226. CIARLET, P.G.; MARDARE, C., Inégalités de Korn non linéaires dans Rn, avec on sans conditions aux limites, C.R. Acad. Sci. Paris, Ser. I 353 (2015), 563-568. BUNOIU, R.; CIARLET, P.G.; MARDARE, C., Existence theorem for a nonlinear elliptic shell models, J. Elliptic Parabolic Eqs. 1 (2015), 31-48. CIARLET, P.G. ; MARDARE, C.; SHEN Xiaoqin, Donati compatibility conditions for membrane and flexural shells, Analysis and Applications 13 (2015), 685-705. CIARLET, P.G. ; MARDARE, S., Une inégalité de Korn non linéaire dans W2,P, p > n, C.R. Acad. Sci. Paris, Ser. I 353 (2015), 905-911. CIARLET, P.G. ; MARDARE, C., Nonlinear Korn inequalities, J. Math. Pures Appl. 104 (2015), 1119-1134. CIARLET, P.G.; P. CIARLET, Jr., SAUTER, S.A.; SIMIAN, C., Intrinsic finite element methods for the computation of fluxes for Poisson's equation, Numer. Math. 132 (2016), 433-462. CIARLET, P.G., Autour d'un lemme fondamental de Jacques-Louis Lions, in Equations and Dérivées Partielles et leurs Applications - Actes du Colloque EDP-Normandie, Le Havre 2015 (C.DOGBE, Editor), pp.1-18, Fédération Normandie de Mathématiques, Paris, 2016. CIARLET, P.G.; HOU Yifeng; MARDARE, C., On Korn's inequalities on a surface, Analysis and Applications 14 (2016), 415-447. CIARLET, P.G.; MARDARE, S., Nonlinear Korn inequalities in Rn and immersions in >W2,P, p > n, considered as functions of their metric tensors in W1,P, J. Math. Pures Appl. 105 (2016), 873-906. CIARLET, P.G.; MARDARE, C.; A mathematical model of Koiter's type for a nonlinearly elastic "almost spherical" shell, C.R.Acad. Sci. Paris, Ser I, 354 (2016), 1241-1247. CIARLET, P.G.; MARDARE, C.; MARDARE, S., Recovery of immersions from their metric tensors and nonlinear Korn inequalities: A brief survey, Chinese Ann. Math., Ser. B, 38 (2017), 253-280. CIARLET, P.G.; IOSIFESCU, O., Nonlinear Donati compatibility conditions on a surface - Application to the intrinsic approach for Koiter's model of a nonlinearly elastic shallow shell, Math. Models Methods Appl. Sci. 27 (2017), 347-384. CIARLET, P.G.; P.G.; MALIN, M.; MARDARE, C., New nonlinear estimates for surfaces in terms of their fundamental forms, C.R.Acad. Sci. Paris, Ser. I, 355 (2017), 226-231. CIARLET, P.G.; IOSIFESCU, O., Une approche intrinsèque d'un modèle non linéaire de la théorie des coques, C.R.Acad. Sci. Paris, Ser I, 355 (2017), 232-242. CIARLET, P.G.; P.G.; MALIN, M.; MARDARE, C., On a vector version of a fundamental lemma of J. L. Lions, Chinese Ann. Math., Ser. B, 39 (2018), 33-46. CIARLET, P.G.; M.; MARDARE, W2,P-estimates for surfaces in terms of their two fundamental forms, C.R. Acad. Sci. Paris, Ser. I, 356 (2018), 85-91. CIARLET, P.G.; M.; MARDARE, A nonlinear shell model of Koiter's type, C.R.Acad. Sci. Paris, Ser I, 356 (2018), 227-234. CIARLET, P.G.; MARDARE, C., An intrinsic formulation of the Kirchhoff-Love theory of linearly elastic plates, Analysis and Applications 16 (2018), 565-584. CIARLET, P.G.; MARDARE, C., PIERSANTI, P., Un problème de confinement pour une coque membranaire linéairement élastique de type elliptique, C.R. Acad. Sci. Paris Ser. I, 356 (2018), 1040-1051. CIARLET, P.G.; MARDARE, C., Intrinsic formulation of the displacement-traction problem in linear shell theory, C.R. Acad. Sci. Paris Ser. I, 356 (2018), 1243-1250. CIARLET, P.G.; MARDARE, C., An existence theorem for a two-dimensional nonlinear shell model of Koiter's type, Math. Models Methods Appl. Sci 28 (2018), 2833-2861. CIARLET, P.G.; MARDARE, C., Asymptotic justification of the intrinsic equations of Koiter's model of a linearly elastic shell, C.R. Acad. Sci. Paris Ser. I, 357 (2019), 99-110. CIARLET, P.G.; MARDARE, C., A surface in W2,P is a locally Lipschitz-continuous function of its fundamental forms in W1,P and LP, p > 2, J. Math. Pures Appl. 124 (2019), 300-318. CIARLET, P.G.; PIERSANTI, P., A confinement problem for a linearly elastic Koiter's shell, C. R. Acad. Sci. Paris Ser. I, 357 (2019), 221-230. CIARLET, P.G.; MARDARE, C., The intrinsic theory of linearly elastic plates, Mathematics and Mechanics of Solids 24 (2019), 1182-1203. CIARLET, P.G.; MARDARE, C., PIERSANTI, P., An obstacle problem for elliptic membrane shells, Mathematics and Mechanics of Solids 24 (2019), 1503-1529. CIARLET, P.G.; MALIN, M., MARDARE, C., New estimates of the distance between two surfaces in terms of the distance between their fundamental forms, Analysis and Applications 17 (2019), 363-392. CIARLET, P.G.; PIERSANTI, P., An obstacle problem for Koiter's shells, Mathematics and Mechanics of Solids 24 (2019), 3061-3079. CIARLET, P.G.; MALIN, M., MARDARE, C., Continuity of a surface in Fréchet spaces, C.R. Acad. Sci. Paris Ser I, 357 (2019), 917-921. CIARLET, P.G.; MALIN, M.; MARDARE, C., Continuity in Fréchet topologies of a surface as a function of its fundamental forms, J. Math. Pures Appl. 142 (2020), 243-265. * CIARLET, P.G., Locally Convex Spaces and Harmonic Analysis: An Introduction, SIAM, Philadelphia, 2021. CIARLET, P.G., Preface to the Classics Edition (Volume I), in Mathematical Elasticity, Volume I: Three-Dimensional Elasticity, pp. xiii-xxxix, SIAM, Philadelphia, 2022. CIARLET, P.G., Preface to the Classics Edition (Volume II), in Mathematical Elasticity, Volume II: Theory of Plates, pp. xv-xxvi, SIAM, Philadelphia, 2022. CIARLET, P.G., Preface to the Classics Edition (Volume III), in Mathematical Elasticity, Volume III: Theory of Shells, pp. xv-xxxiii, SIAM, Philadelphia, 2022. CIARLET, P.G.; MARDARE, C., On the brachistochrone problem, Comm. Math. Anal. Appl. 1 (2022), 213-240. CIARLET, P.G.; MARDARE, C., Intrinsic formulation of the Kirchhoff-Love theory of nonlinearly elastic shallow shells, Comm. Math. Anal. Appl. 1 (2002), 545-567. CIARLET, P.G.; MARDARE, C., Intrinsic formulation of the Kirchhoff-Love theory of nonlinearly elastic plates, Mathematics and Mechanics of Solids, accepted for publication. CIARLET, P.G., An intrinsic formulation of the non Kármán equations, Comm. Math. Anal. Appl, accepted for publication.

推荐链接
down
wechat
bug