个人简介
教育背景
2014.08-2019.07 清华大学 能源与动力工程系 工学博士
2011.08-2014.07 清华大学 经济管理学院 经济学学士(双学位)
2010.08-2014.07 清华大学 能源与动力工程系 工学学士
工作经历
2023.01-至今 上海交通大学 机械与动力工程学院 副教授(博导)
2021.06-2022.12 上海交通大学 机械与动力工程学院 助理教授(博导)
2019.06-2021.05 上海交通大学 机械与动力工程学院 博士后
出访及挂职经历2021.02-2021.05 新加坡国立大学 E2S2-CREATE 课题组学术交流
2018.01-2018.07 牛津大学 化学系 博士生访学
2017.09-2017.10 阿尔伯塔大学 材料系 课题组学术交流
2015.07-2015.08 普渡大学 机械工程学院 实验室交换
国际学术会议:
2023.09 10th Heat Powered Cycles Conference, HPC2023, 爱丁堡, 英国
2023.06 21st International Symposium on Intercalation Compounds, ISICXXI, 南锡, 法国
2022.05 14th International Conference on Fundamentals of Adsorption, #14FOA, 布鲁姆菲尔德, 美国
2021.08 XXIX International Materials Research Congress, IMRC2021, 坎昆, 墨西哥
2021.03 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15, 阿布扎比, 阿联酋
2019.05 13th International Conference on Fundamentals of Adsorption, #13FOA, 凯恩斯, 澳大利亚
2016.11 13th International Conference on Greenhouse Gas Control Technologies, GHGT-13, 洛桑, 瑞士
2014.10 12th International Conference on Greenhouse Gas Control Technologies, GHGT-12, 奥斯汀, 美国
科研项目
项目负责人:
2023.03 黑鲸能源横向项目:“直接空气捕集(DAC)技术”
2022.12 国家重点研发项目子课题:“新型快稳吸附剂定向设计与烟气CO2捕集性能研究”
2022.04 上海市科技兴农重点攻关项目(技术培育):“低能耗转轮式空气源二氧化碳气肥系统研发”
2021.01 国家自然科学基金青年项目: “纳米水滑石复合材料捕集微量二氧化碳的吸附机理和循环特性”
2019.06 中国博士后科学基金第66批面上资助: “基于壳核复合材料的直接空气二氧化碳捕集机理研究”
2019.06 中国博士后创新人才支持计划项目: “空分纯化系统分子筛吸附强化与能量回收”
参与研究:
2023.01 国家自然科学基金重大项目课题:“热能高效存储转换及能质调控原理”
2022.09 上海市科技创新行动计划国际科技合作项目:“用于未来城市的工业热泵驱动DAC技术分析研究”
2022.07 国电投合作项目:“面向二氧化碳永久封存及燃料化的吸附式捕集技术”
2020.06 SJTU-NUS合作研究项目: “基于碳循环链的太阳能辅助生物质气化发电研究”
2019.06 国家重点研发项目: “分子筛吸附强化与能量回收技术”
2019.01 国家自然科学基金青年项目: “类水滑石中温变压吸附CO2吸附机理及传热传质特性研究”
2018.07 阿尔伯塔合作专项“钾修饰水滑石CO2吸附机理及其在高纯氢制取中的应用”
2016.01 山西重大专项“低能耗中温变压吸附H2/CO2分离与净化关键技术与装备开发”
2015.06 东芝国际合作项目“High Purity Hydrogen Production by Novel Pressure Swing Adsorption Technology”
2014.12 广东电网横向项目“IGCC系统中吸收增强制氢及燃烧前脱碳技术研究”
2013.08 国家863纵向项目“基于中温干法硫碳共脱的低能耗CO2/H2分离技术”
专著:
[48] 朱炫灿, 钾修饰镁铝水滑石富氢气体中温CO/CO2净化研究, 北京: 清华大学出版社, 2021.4.
[47] Zhu, X.; Shi, Y.; Li, S.; Cai, N.; Anthony, Edward J., System and processes of pre-combustion carbon dioxide capture and separation. In pre-combustion carbon dioxide capture materials, The Royal Society of Chemistry: 2018; pp 281-334.
教学工作
2023.09-至今 上海交通大学本科生课程:《机械与动力仿真实践(机械类)》
2022.02-至今 上海交通大学本科生课程:《工程与社会》
2022.02-至今 上海交通大学研究生课程:《高等热力学》
2021.02-2021.06 课程助教,上海交通大学研究生课程:《高等热力学》
2017.04-2017.04 课程助教,清华大学海外学者短期讲学课程:《材料计算及其应用》
2015.09-2016.01 课程助教,清华大学本科生文化素质核心课:《能源与气候变化/可持续发展》
软件版权登记及专利
[10] 胡斌; 蔡宏; 朱炫灿; 葛冰瑶; 干卓臻; 王如竹. 一种工业余热驱动的近零能耗直接空气捕集系统: 中国, 发明专利, CN202211298101.2.
[9] 胡斌; 葛冰瑶; 朱炫灿; 干卓臻; 吴迪; 王如竹. 一种双热源热泵型空气碳直接捕集系统: 中国, 发明专利, ZL202210612102.3.
[8] 朱炫灿; 吴俊晔; 葛天舒; 王如竹. 一种CO2气肥系统及运行方法: 中国, 发明专利, CN202210453027.0.
[7] 葛天舒, 吴俊晔, 朱炫灿, 杨凡, 王如竹. 基于胺功能化硅溶胶的整体结构吸附剂、制备方法及应用: 中国, 发明专利, CN202110484154.2.
[6] 吴俊晔, 葛天舒, 朱炫灿, 杨凡. 一种快速变温吸附转轮式直接空气二氧化碳捕集系统及方法: 中国, 发明专利, CN202011032726.5.
[5] 吴俊晔, 葛天舒, 朱炫灿, 杨凡. 一种快速变温吸附转轮式烟气二氧化碳捕集系统及方法: 中国, 发明专利, CN202011033932.8.
[4] 史翊翔, 李爽, 蔡宁生, 郝培璇, 朱炫灿. 一种中温真空变压吸附系统及方法: 中国, 发明专利, ZL201811160591.3.
[3] 蔡宁生, 史翊翔, 朱炫灿. 一种吸附剂真实高压吸附动力学测试装置及方法: 中国, 发明专利, ZL201710095774.0.
[2] 李汶颖, 史翊翔, 蔡宁生, 朱炫灿. 一种利用可再生电力的固体氧化物电解池制天然气的方法: 中国, 发明专利, ZL201310712385.X.
[1] 朱炫灿, 史翊翔, 蔡宁生. 一种浮体电解质液态储能电池单体结构: 中国, 发明专利, ZL201310177420.2.
荣誉奖励
2022.11 Cell Press出版社论文奖
2022.09 授予缙云县“教师之家”荣誉称号
2022.07 第二十三届上海交通大学“盛宣怀杯”学生创新创业大赛铜奖指导老师
2022.05 第十五届全国节能减排大赛二等奖、三等奖作品指导老师
2022.03 第十七届挑战杯“黑科技”专项赛卫星级作品指导老师
2021.07 第一届上海交通大学“唯材杯”挑战赛二等奖作品指导老师
2020.12 博士后创新人才支持计划优秀创新成果
2020.09 清华大学机械工程学院刘仙洲奖学金
2020.05 入选“清华大学优秀博士学位论文丛书”
2019.11 上海市超级博士后
2019.07 清华大学毕业生启航银奖
2019.07 清华大学优秀博士学位论文
2019.04 博士后创新人才支持计划
2018.12 清华大学研究生综合奖学金(清华之友-IHI奖学金)
2018.04 清华大学毛宗强氢能基金奖学金
2017.11 清华大学研究生国家奖学金
2016.12 清华大学博士生暑期社会实践校级二等奖
2015.12 清华大学研究生综合奖学金(清华之友-东方电气奖学金)
2014.08 清华大学研究生未来学者奖学金(本科专业成绩系内第一)
2013.12 清华大学本科生综合奖学金(清华之友-宝钢奖学金)
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[46] Ku, H.; Miao, Y.; Wang, Y.; Chen, X.; Zhu, X.; Lu, H.; Li, J.; Yu, L., Frontier science and challenges on offshore carbon storage. Front. Env. Sci. Eng. 2023, 17 (7), 80.
[45] Wu, J.; Zhu, X.; Yang, F.; Wang, R.; Ge, T., Shaping techniques of adsorbents and their applications in gas separation: a review. J. Mater. Chem. A 2022, 10 (43), 22853-22895.
[44] Zhu, X.; Xie, W.; Wu, J.; Miao, Y.; Xiang, C.; Chen, C.; Ge, B.; Gan, Z.; Yang, F.; Zhang, M.; O'Hare, D.; Li, J.; Ge, T.; Wang, R., Recent advances in direct air capture by adsorption. Chem. Soc. Rev. 2022, 51 (15), 6574-6651.
[43] 朱炫灿; 葛天舒; 吴俊晔; 杨凡; 王如竹, 吸附法碳捕集技术的规模化应用和挑战. 科学通报 2021, 66 (22), 2861-2877.
[42] Gao, W.; Liang, S.; Wang, R.; Jiang, Q.; Zhang, Y.; Zheng, Q.; Xie, B.; Toe, C. Y.; Zhu, X.; Wang, J.; Huang, L.; Gao, Y.; Wang, Z.; Jo, C.; Wang, Q.; Wang, L.; Liu, Y.; Louis, B.; Scott, J.; Roger, A.; Amal, R.; He, H.; Park, S., Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 2020, 49 (23), 8584-8686.
[41] Zhu, X.; Li, S.; Shi, Y.; Cai, N., Recent advances in elevated-temperature pressure swing adsorption for carbon capture and hydrogen production. Prog. Energ. Combust. 2019, 75, 100784.
研究论文:
2023:
[40] Ge, B.; Chen, C.; Gan, Z.; Zhu, X.; Miao, Y.; Wang, Y.; Ge, T.; O'Hare, D.; Wang, R., Scalable synthesis of amine-grafted ultrafine layered double hydroxide nanosheets with improved carbon dioxide capture capacity from air. ACS Sustainable Chem. Eng. 2023, DOI: 10.1021/acssuschemeng.3c01183.
[39] Miao, Y.; Wang, Y.; He, Z.; Ge, B.; Zhu, X.; Li, J.; Yu, L., Mixed diethanolamine and polyethyleneimine with enhanced CO2 capture capacity from air. Adv. Sci. 2023, 10 (16), 2207253.
[38] Wang, B.; Li, X.; Zhu, X.; Wang, Y.; Tian, T.; Dai, Y.; Wang, C., An epitrochoidal rotary reactor for solar-driven hydrogen production based on the redox cycling of ceria: Thermodynamic analysis and geometry optimization. Energy 2023, 270, 126833.
2022:
[37] Miao, Y.; Wang, Y.; Zhu, X.; Chen, W.; He, Z.; Yu, L.; Li. J., Minimizing the effect of oxygen on supported polyamine for direct air capture. Sep. Purif. Technol. 2022, 298, 121583.
[36] Wu, J.; Zhu, X.; Chen, Y.; Wang, R.; Ge, T., The analysis and evaluation of direct air capture adsorbents on the material characterization level. Chem. Eng. J. 2022, 450, 137958.
[35] Ling, Y.; Wang, H.; Liu, M.; Wang, B.; Li, S.; Zhu, X.; Shi, Y.; Xia, H.; Guo, K.; Hao, Y.; Jin, H., Sequential separation-driven solar methane reforming for H2 derivation under mild conditions. Energ. Environ. Sci. 2022, 15, 1861-1871.
[34] He, Z.; Wang, Y.; Miao, Y.; Wang, H.; Zhu, X.; Li, J., Mixed polyamines promotes CO2 adsorption from air. J. Environ. Chem. Eng. 2022, 10 (2), 107239.
[33] Yang, F.; Ge, T.; Zhu, X.; Wu, J.; Wang, R., Study on CO2 capture in humid flue gas using amine-modified ZIF-8. Sep. Purif. Technol. 2022, 287, 120535.
[32] Yang, F.; Zhu, X.; Wu, J.; Wang, R.; Ge, T., Kinetics and mechanism analysis of CO2 adsorption on LiX@ZIF-8 with core shell structure. Powder Technol. 2022, 399, 117090.
2021:
[31] Zhu, X.; Lyu, M.; Ge, T.; Wu, J.; Chen, C.; Yang, F.; O'Hare, D.; Wang, R., Modified layered double hydroxides for efficient and reversible carbon dioxide capture from air. Cell Reports Physical Science 2021, 2 (7), 100484.
[30] Zhu, X.; Ge, T; Yang, F.; Wang, R., Design of steam-assisted temperature vacuum-swing adsorption processes for efficient CO2 capture from ambient air. Renew. Sust. Energ. Rev. 2021, 137, 110651.
[29] Zhu, X.; Ge, T.; Yang, F.; Lyu, M.; Chen, C.; O'Hare, D.; Wang, R., Design of amine-functionalized layered double oxide nanosheets with efficient CO2 capture capacities from ambient air, ultrafast kinetics, and promising stability. Available at SSRN: https://ssrn.com/abstract=3811992.
[28] Miao, Y.; He, Z.; Zhu, X.; Izikowitz, D.; Li, J., Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica. Chem. Eng. J. 2021, 426, 131875.
[27] Wu, J.; Zhu, X.; Yang, F.; Ge, T.; Wang, R., Easily-synthesized and low-cost amine-functionalized silica sol-coated structured adsorbents for CO2 capture. Chem. Eng. J. 2021, 425, 131409.
[26] Yang, F.; Wu, J.; Zhu, X.; Ge, T.; Wang, R., Enhanced stability and hydrophobicity of LiX@ZIF-8 composite synthesized environmental friendly for CO2 capture in highly humid flue gas. Chem. Eng. J. 2021, 410, 128322.
2020:
[25] Zhu, X.; Ge, T.; Yang, F.; Lyu, M.; Chen, C.; O'Hare, D.; Wang, R., Efficient CO2 capture from ambient air with amine-functionalized Mg–Al mixed metal oxides. J. Mater. Chem. A 2020, 8 (32), 16421-16428.
[24] Zhu, X.; Chen, C.; Shi, Y.; O'Hare, D.; Cai, N., Aqueous miscible organic-layered double hydroxides with improved CO2 adsorption capacity. Adsorption 2020, 26 (7), 1127-1135.
[23] Zhu, X.; Hao, P.; Shi, Y.; Li, S.; Cai, N., Application of elevated temperature pressure swing adsorption in hydrogen production from syngas. Adsorption 2020, 26 (7): 1227-1237.
[22] Khalkhali, M.; Zhu, X.; Shi, Y.; Liu, Q.; Choi, P.; Zhang, H., Structure and CO2 physisorption capacity of hydrotalcite-derived oxide. J. CO2 Util. 2020, 36, 64-75.
[21] Liu, Z.; Hao, P.; Li, S.; Zhu, X.; Shi, Y.; Cai, N., Simulation and energy consumption comparison of gas purification system based on elevated temperature pressure swing adsorption in ammonia synthetic system. Adsorption 2020, 26 (7), 1239-1252.
[20] Hao, P.; Zhu, X.; Li, S.; Shi, Y.; Cai, N., Efficiency analysis of warm gas clean up in integrated gasification fuel cell (IGFC) system. Research Square 2020, DOI: 10.21203/rs.3.rs-42837/v1.
2019:
[19] Zhu, X.; Chen, C.; Wang, Q.; Shi, Y.; O'Hare, D.; Cai, N., Roles for K2CO3 doping on elevated temperature CO2 adsorption of potassium promoted layered double oxides. Chem. Eng. J. 2019, 366, 181-191.
[18] Zhu, X.; Chen, C.; Suo, H.; Wang, Q.; Shi, Y.; O'Hare, D.; Cai, N., Synthesis of elevated temperature CO2 adsorbents from aqueous miscible organic-layered double hydroxides. Energy 2019, 167, 960-969.
[17] Chen, Y.; Shi, Y.; Zhu, X.; Cai, N., Impedance characterization of elevated temperature carbon dioxide adsorption process on potassium-modified hydrotalcite. Sep. Purif. Technol. 2019, 212, 670-675.
[16] Hao, P.; Shi, Y.; Li, S.; Zhu, X.; Cai, N., Adsorbent characteristic regulation and performance optimization for pressure swing adsorption via temperature elevation. Energ. Fuel. 2019, 33 (3), 1767-1773.
[15] Li, S.; Hao, P.; Zhu, X.; Shi, Y.; Cai, N.; Li, S.; Jiang, H., On-site demonstration of an elevated temperature hydrogen clean-up unit for fuel cell applications. Adsorption 2019, 25 (8), 1683-1693.
2018:
[14] Zhu, X.; Shi, Y.; Li, S.; Cai, N., Two-train elevated-temperature pressure swing adsorption for high-purity hydrogen production. Appl. Energ. 2018, 229, 1061-71.
[13] Zhu, X.; Shi, Y.; Li, S.; Cai, N., Elevated temperature pressure swing adsorption process for reactive separation of CO/CO2 in H2-rich gas. Int. J. Hydrogen Energ. 2018, 43 (29), 13305-17.
[12] Hao, P.; Shi, Y.; Li, S.; Zhu, X.; Cai, N., Correlations between adsorbent characteristics and the performance of pressure swing adsorption separation process. Fuel 2018, 230, 9-17.
2017:
[11] Zhu, X.; Shi, Y.; Cai, N., CO2 residual concentration of potassium-promoted hydrotalcite for deep CO/CO2 purification in H2-rich gas. J. Energy Chem. 2017, 26 (5), 956-64.
[10] Zhu, X.; Shi, Y.; Cai, N., High-pressure carbon dioxide adsorption kinetics of potassium-modified hydrotalcite at elevated temperature. Fuel 2017, 207, 579-90.
[9] 朱炫灿; 史翊翔; 蔡宁生, 合成气微量CO深度净化新方法实验研究. 工程热物理学报 2017, 38 (2), 421-427.
[8] Zhu, X.; Shi, Y.; Cai, N., Investigation on the trace amount of released CO in sorption enhanced water gas shift reaction applied in pre-combustion CO2 capture and high purity H2 production. Energy Procedia 2017, 114, 2525-2536.
2016:
[7] Zhu, X.; Shi, Y.; Cai, N., Integrated gasification combined cycle with carbon dioxide capture by elevated temperature pressure swing adsorption. Appl. Energ. 2016, 176, 196-208.
[6] Zhu, X.; Shi, Y.; Cai, N., Characterization on trace carbon monoxide leakage in high purity hydrogen in sorption enhanced water gas shifting process. Int. J. Hydrogen Energ. 2016, 41 (40), 18050-61.
[5] 许凯; 史翊翔; 湛志钢; 徐齐胜; 朱炫灿; 李爽, 钾修饰镁铝复合金属氧化物脱除二氧化碳实验研究. 中国电机工程学报 2016, 36 (23), 6454-6459.
2015:
[4] Zhu, X.; Wang, Q.; Shi, Y.; Cai, N., Layered double oxide/activated carbon-based composite adsorbent for elevated temperature H2/CO2 separation. Int. J. Hydrogen Energ. 2015, 40 (30), 9244-53.
[3] 李爽; 史翊翔; 杨懿; 朱炫灿; 蔡宁生, 钾修饰水滑石吸附剂脱碳性能及颗粒强度实验研究. 工程热物理学报 2015, 36 (7), 1606-1610.
2014:
[2] Zhu, X.; Shi, Y.; Cai, N.; Li, S.; Yang, Y., Techno-economic evaluation of an elevated temperature pressure swing adsorption process in a 540 MW IGCC power plant with CO2 capture. Energy Procedia 2014, 63, 2016-2022.
[1] 朱炫灿; 史翊翔; 蔡宁生, 改性活性炭中温CO2吸附特性的实验研究. 中国工程热物理学会2014年学术会议, 西安, 2014.