个人简介
教育背景
2001-2005 香港科技大学 机械工程专业 获博士学位
1995-2001 西安交通大学 动力工程及工程热物理专业 获博士学位
1991-1995 西安交通大学 锅炉专业 获学士学位
工作经历
2005―2006 香港科技大学机械工程系 访问学者
2006―2007 美国堪萨斯大学化工及石油工程系 博士后研究员
科研项目
主持的科研项目:
铁铬液流电池系统分析及关键技术研发 (企业研发)
高性能铁-铬液流电池多孔电极研究 (企业研发)
铁铬液流电池用电极材料的测试 (企业研发)
液流电池多孔电极内的气相析出现象及其对流动与传质的影响(国家自然科学基金)
燃料电池流场模型模拟与设计 (国家重点研发计划子课题)
氢溴液流电池高电密充放电过程的多相多组分传输现象(国家自然科学基金)
铁 / 铬液流电池CFD模型与电堆网络模型开发 (企业研发)
锂离子二次电池安全性评估热模型软件开发 (企业研发)
质子交换膜燃料电池电极水淹的预测及诊断(上海市浦江人才计划)
直接甲醇燃料电池阴极水淹诱导的局部析氢反应 (国家自然科学基金)
教学工作
1、 课程名称:工程热力学
授课对象:本科生
学时数: 48学时
学分:3
2、 课程名称:高等工程热力学
授课对象:硕士生/博士生
学时数: 48学时
学分:3
软件版权登记及专利
发明专利:压缩率可调型多孔介质平面渗透率的测量装置及方法;申请号: 201510964797.1;申请人: 上海交通大学;发明人: 叶强 单天祥;申请公布号: CN 05466834 A;授权公告日: 2018.1.23;专利号:ZL 2015 A0964797.1
发明专利:具备催化剂管理与电解液容量再平衡的液流电池子系统;申请号: 202110397907.6;申请人: 上海交通大学;发明人: 张育嘉 叶强;申请公布号: CN113270624A;授权公告日: 2022.3.22;专利号:ZL 2021 10397907.6
荣誉奖励
2018 高等教育国家级教学成果奖二等奖(排名8)
2017 上海交通大学优秀教师三等奖
2016 上海交通大学教学成果二等奖(排名5)
2009 上海市浦江人才计划
2008 上海交通大学“晨星青年学者奖励计划”SMC 优秀青年教师奖
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Y. J. Zhang, Q. Ye*, M. Ni, “The impact of in-situ hydrogen evolution on the flow resistance of electrolyte flowing through the carbon felt electrode in a redox flow battery”, Journal of Power Sources, 564, 232873, (2023).
Q. Ye*, Y. J. Zhang,, P. Cheng, Z. Shao, “Effects of wettability and flow direction on gas retention and flow resistance of water flowing through carbon felts with thermally induced gas evolutions”, International Journal of Heat and Mass Transfer, 156, 119911, (2020).
X. You, Q. Ye*, P. Cheng, “The Dependence of Mass Transfer Coefficient on the Electrolyte Velocity in Carbon Felt Electrodes: Determination and Validation”, Journal of the Electrochemical Society, 164, E3386-E3394, (2017).
Q. Ye*, T. X. Shan, P. Cheng, “Thermally induced evolution of dissolved gas in water flowing through a carbon felt sample”, International Journal of Heat and Mass Transfer, 108, Part B, 2451-2461, (2017).
X. You, Q. Ye*, P. Cheng, “Scale-up of high power density redox flow batteries by introducing interdigitated flow fields”, International Communications in Heat and Mass Transfer, 75, 7-12, (2016).
X. You, Q. Ye*, T.V. Nguyen, P. Cheng, “2-D Model of a H2/Br2 Flow Battery with Flow-Through Positive Electrode”, Journal of the Electrochemical Society, 163, A447-A457, (2016).
Q. Ye*, J. Hu, P. Cheng, Z. Ma, “Design trade-offs among shunt current, pumping loss and compactness in the piping system of a multi-stack vanadium flow battery” Journal of Power Sources, 296, 352-364, (2015).
X.G. Yang, Q. Ye*, P. Cheng, T.S. Zhao, “Effects of the electric field on ion crossover in vanadium redox flow batteries” Applied Energy, 145, 306-329, (2015).
X. G. Yang, Q. Ye*, P. Cheng, “Oxygen starvation induced cell potential decline and corresponding operating state transitions of a direct methanol fuel cell in galvanostatic regime”, Electrochimica Acta, 117, 179-191, (2014).
X. G. Yang, Q. Ye*, P. Cheng, “Hydrogen pumping effect induced by fuel starvation in a single cell of a PEM fuel cell stack at galvanostatic operation”, International Journal of Hydrogen Energy, 37, 14439-14453, (2012).
X. G. Yang, Q. Ye*, P. Cheng, “In-plane transport effects on hydrogen depletion and carbon corrosion induced by anode flooding in proton exchange membrane fuel cells”, International Journal of Heat and Mass Transfer, 55, 4754-4765 (2012).
Q. Ye*, X. G. Yang, P. Cheng, “Modeling of Spontaneous Hydrogen Evolution in a Direct Methanol Fuel Cell”, Electrochimica Acta, 69, 230-238, (2012).
X. G. Yang, Q. Ye*, P. Cheng, “Matching of Water and Temperature Fields in Proton Exchange Membrane Fuel Cells with Non-uniform Distributions”, International Journal of Hydrogen Energy, 36, 12524-12537, (2011).
Q. Ye, T.V. Nguyen*, “Three-dimensional Simulation of Liquid Water Distribution in a PEM Fuel Cell with Experimentally Measured Capillary Functions”, Journal of the Electrochemical Society, 154, B1242-B1251, (2007).
Q. Ye, T. S. Zhao*, C. Xu, “The Role of Under-Rib Convection in Mass Transport of Methanol through the Serpentine Flow Field and its Neighboring Porous Layer in a DMFC”, Electrochimica Acta, 51, 5420-5429, (2006).
Q. Ye, T. S. Zhao*, “Abrupt Decline in Open-Circuit Voltage of Direct Methanol Fuel Cells at Critical Oxygen Feed Rate”, Journal of the Electrochemical Society, 152, A2238-A2245, (2005).
Q. Ye, T. S. Zhao*, J.G. Liu, “Effect of Transient Hydrogen Evolution/Oxidation Reactions on the Open-Circuit Voltage of Direct Methanol Fuel Cells”, Electrochemical and Solid-State Letters, 8, A549-A553, (2005).
Q. Ye, T. S. Zhao*, “A Natural-Circulation Fuel Delivery System for Direct Methanol Fuel Cells”, Journal of Power Sources, 147, 196-202 (2005).
Q. Ye, T. S. Zhao*, “Electrolytic Hydrogen Evolution in DMFCs Induced by Oxygen Interruptions and Its Effect on Cell Performance”, Electrochemical and Solid-State Letters, 8, A211-A214, (2005).
Q. Ye, T. S. Zhao*, H. Yang, J. Prabhuram, “Electrochemical Reactions in a DMFC under Open-Circuit Conditions”, Electrochemical and Solid-State Letters, 8, A52-A54, (2005).