当前位置: X-MOL首页全球导师 国内导师 › 徐治国

个人简介

教育背景 2008-2012 西安交通大学 博士 2005-2008 西安交通大学 硕士 1998-2002 中国石油大学 学士 工作经历 2015.12- 至今 上海交通大学机械与动力工程学院 副研究员、博士生导师 2014.08-2015.12 上海交通大学机械与动力工程学院 助理研究员、博士生导师 2012.06-2014.07 上海交通大学机械与动力工程学院 博士后 2002.07-2005.09 中国石油集团长庆油田 助理工程师 出访及挂职经历 2015.12 太平洋会议中心,日本横滨 2019.09 东京理科大学,日本东京 科研项目 2023-2026 国家自然科学基金面上项目, 负责人 2021-2024 上海市自然科学基金面上项目, 负责人 2019-2020 国家油页岩开采研发中心开放基金项目, 负责人 2016-2019 国家自然科学基金面上项目, 负责人 2015-2017 上海市自然科学基金面上项目, 负责人 2013-2014 中国博士后科学基金面上项目, 负责人 2017-2021 国家自然科学基金重点项目, 参与人 2015-2017 国家自然科学基金青年项目, 参与人 2012-2016 国家科技部“973”项目, 参与人 2018-2019 横向项目: ******热光属性研究, 负责人 2018-2019 横向项目: 二氧化碳与储层岩石及主要堵塞元素反应, 负责人 2018-2018 横向项目: ******汽化器换热计算及仿真, 负责人 2017-2018 横向项目: 二氧化碳压裂改造过程中管道温度压力分布, 负责人 代表性专著有: [1]《储能技术及应用》(参编),化学工业出版社, 2018 [2]《传热学》(参编),高等教育出版社, 2022 教学工作 本科生课程《传热学》 本科生课程《工程与社会》 软件版权登记及专利 发明专利: [1] 徐治国,赵长颖. 基于冲击射流的高孔密度通孔金属泡沫电子器件散热装置. 发明专利,授权号:ZL201310027366.3. [2] 徐治国,赵长颖.具有渐变形貌特征的通孔金属泡沫热管换热装置. 发明专利,授权号:ZL201410160129.9. [3] 徐治国,赵长颖.预混预热式梯密度金属泡沫燃烧器. 发明专利,授权号: ZL201310496700.X. [4] 徐治国,赵长颖.梯密度通孔金属泡沫及其制备方法. 发明专利, 授权号: ZL 201310499157.9. [5] 徐治国,赵长颖.金属纤维毡的制备方法. 发明专利, 授权号: ZL 201410061055.3. [6] 徐治国, 赵长颖. 具有孔密度渐变的通孔金属泡沫热管换热装置. 发明专利,授权号: ZL 201410483506.2. [7] 徐治国, 赵长颖.梯密度通孔金属泡沫及其简易制备方法. 发明专利,授权号: ZL201410563901.1. [8] 徐治国,赵长颖.基于金属泡沫的汽车尾气净化器. 发明专利,授权号: ZL201410691016.1. [9] 徐治国,赵长颖.梯度金属泡沫散热装置. 发明专利,授权号: ZL201510114972.8. [10] 徐治国. 通孔石墨烯泡沫的制备方法. 发明专利, 授权号: ZL 201410401574.X. [11] 徐治国,赵长颖.渐变金属泡沫基相变蓄热装置. 发明专利,公开号: CN 103234377A. [12] 徐治国, 秦杰. 变密度金属泡沫热散热器. 发明专利,公开号: CN107706161A. [13] 徐治国, 赵长颖. 渐变形貌特征的通孔金属泡沫及其制备方法和换热装置. 发明专利,公开号:CN103060592A. [14] 徐治国, 龚群. 梯度金属泡沫和翅片组合式散热器. 发明专利,公开号:CN107979953A. [15] 纪育楠,赵长颖,徐治国. 相变蓄热介质. 发明专利, 公开号: CN103923615A. [16] 徐会金,赵长颖,徐治国. 一种高速射流装置的环状金属泡沫直孔喷嘴. 发明专利,公开号:CN104226512A. [17] 徐会金, 赵长颖, 徐治国. 一种以金属泡沫均匀分配流体流量的多通道结构. 发明专利,公开号:CN104266531A. [18] 赵长颖,陈云宇,徐治国. 相变蓄热介质及其制备及应用.发明专利,申请号:201510603209.1. 荣誉奖励 2023 上海交大机动学院班主任考核优秀 2022 上海市优秀硕士毕业生指导教师 2022 Best Research Award,International Research Awards on New Science Inventions NESIN 2022 Awards 2021 上海市自然科学一等奖 2021 上海交通大学优秀班主任 2020 上海交通大学优秀班主任 2019 上海交通大学机动学院最受欢迎教师 2018 上海交通大学本科招生先进个人 2017 上海交通大学机动学院最佳班主任 2017 上海交通大学优秀班主任 2016 上海交通大学优秀班主任 2016 上海交通大学博士后奖励基金 2015 上海交通大学优秀班主任 2015 Session Chair of International Conference on Power Engineering, Yokohama, Japan 2014 Session Chair of International Heat Transfer Symposium, Beijing, China 2013 Session Chair of International Conference on Power Engineering, Wuhan, China 2012 《西安交通大学学报》年度最具学术影响力优秀论文 2011 中国光华科技基金会奖励

研究领域

复杂多孔介质多尺度多相流动传热传质 相变热化学储热传热传质 多孔金属强化传热传质 二氧化碳传热传质 微纳辐射传热

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] J. Qin, Z. G. Xu*, Z. Y. Liu, F. Lu, C. Y. Zhao. Pore-scale investigation on flow boiling heat transfer mechanisms in open cell metal foam. International Communications in Heat and Mass Transfer, 2020,110:104418. [2] Q. Gong, J. Qin, J. P. Lan, C. Y. Zhao, Z. G. Xu*. Numerical investigation of key parameter effects on temperature and pressure in wellbore during carbon dioxide fracturing. Heat Transfer Research, 2020,51(2):95-108. [3] Z. G. Xu, X. Zhou, X. Zhang, J. Qin, C. Y. Zhao. Pore-scale investigation on the thermochemical process in uniform and gradient porous media considering immiscible phase. International Communications in Heat and Mass Transfer, 2020,116:104725. [4] Q. Gong, Z. G. Xu*, M. Q. Wang, J. Qin. Numerical investigation on wellbore temperature and pressure during carbon dioxide fracturing, Applied Thermal Engineering, 2019,157:113675. [5] J. Qin, X. Zhou, C. Y. Zhao, Z. G. Xu*. Numerical investigation on boiling mechanism in porous metals by LBM at pore scale level. International Journal of Thermal Sciences, 2018, 130: 298-312. [6] X. Ai, Z. G. Xu, C. Y. Zhao. Experimental study on heat transfer of jet impingement with a moving nozzle. Applied Thermal Engineering, 2017, 115:682-691. [7] Z .G. Xu, C. Y. Zhao. Enhanced boiling heat transfer by gradient porous metals in saturated pure water and surfactant solutions. Applied Thermal Engineering, 2016, 100: 68-77. [8] Z .G. Xu, C. Y. Zhao. Experimental study on pool boiling heat transfer in gradient metal foams. International Journal of Heat and Mass Transfer, 2015, 85: 824-829. [9] Z. G. Xu, Z. G. Qu, C. Y. Zhao, W. Q. Tao. Experimental correlation for pool boiling heat transfer on metallic foam surface and bubble cluster growth behavior on grooved array foam surface.International Journal of Heat and Mass Transfer, 2014, 77:1169-1182. [10] Z. G. Xu, C. Y. Zhao. Influence of nanoparticles on pool boiling heat transfer in porous metals. Applied Thermal Engineering, 2014, 65: 34-41. [11] Z. G. Xu, C. Y. Zhao. Pool boiling heat transfer of open-celled metal foams with V-shaped grooves for high pore densities. Experimental Thermal and Fluid Science, 2014, 52: 128-138. [12] Z. G. Xu, C. Y. Zhao. Thickness effect on pool boiling heat transfer of trapezoid-shaped copper foam fins. Applied Thermal Engineering, 2013, 60: 359-370. [13] Z. G. Xu, Z. G. Qu, C. Y. Zhao, W. Q. Tao. Experimental study of pool boiling heat transfer on metallic foam surface with U-shaped and V-shaped grooves. Journal of Enhanced Heat Transfer, 2012, 19: 549-559. [14] Z. G. Xu, Z. G. Qu, C. Y. Zhao, W. Q. Tao. Experimental study of pool boiling heat transfer on horizontal metallic foam surface with crossing and single-directional V-shaped groove in saturated water. International Journal of Multiphase Flow, 2012, 41: 44-55. [15] Z. G. Xu, Z. G. Qu, C. Y. Zhao, W. Q. Tao. Pool boiling heat transfer on open-celled metallic foam sintered surface under saturation condition. International Journal of Heat and Mass Transfer, 2011, 54: 3856-3867. [16] R. L. Huang, C. Y. Zhao, Z. G. Xu. Investigation of bubble behavior in gradient porous media under pool boiling conditions. International Journal of Multiphase Flow, 2018,103:85-93. [17] H. J. Xu, C. Y. Zhao, Z. G. Xu. Analytical considerations of slip flow and heat transfer through microfoams in mini/micro channels with asymmetric wall heat fluxes. Applied Thermal Engineering, 2016, 93:15-26. [18] Y. Zhao, C. Y. Zhao, Z. G. Xu. Modeling metal foam enhanced phase change heat transfer in thermal energy storage by using phase field method.International Journal of Heat and Mass Transfer, 2016, 99:170-181. [19] C. Y. Zhao, Y. N. Ji, Z. G. Xu. Investigation of the Ca(NO3)2-NaNO3 mixture for latent heat storage. Solar Energy Materials & Solar Cells, 2015, 140: 281-288. [20] Y. Zhao, C. Y. Zhao, Z. G. Xu. Numerical study of solid-liquid phase change by phase field method.Computers & Fluids, 2018, 164: 94-101. [21] O. Lamini, R. Wu, C. Y. Zhao, Z. G. Xu. Enhanced heat spray cooling with a moving nozzle. Applied Thermal Engineering, 2018, 141: 921-927. [22] Z. G. Qu, D. G. Li, J. Y. Huang, Z. G. Xu, X. L. Liu, W. Q. Tao. Experimental investigations of pool boiling heat transfer on horizontal plate sintered with metallic fiber felt. International Journal of Green Energy, 2012, 9: 22-38. [23] H. J. Xu, L. Gong, C. Y. Zhao, Y. Yang, Z. G. Xu. Analytical considerations of local thermal non-equilibrium conditions for thermal transport in metal foams. International Journal of Thermal Sciences, 2015, 95: 73-87. [24] Y. Zhao, Y. You, H. B. Liu, C. Y. Zhao, Z. G. Xu. Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process. Energy, 2018, 157:690-706. [25] Z. G. Xu, Q. Gong. Numerical investigation on forced convection of tubes partially filled with composite metal foams under local thermal non-equilibrium condition. International Journal of Thermal Sciences, 2018, 133: 1-12. [26] Z. G. Xu, S. Mou, M. Q. Wang, Q. Gong, J. Qin. Experimental investigation on pool boiling mechanism of two-level gradient metal foams in deionized water, aqueous surfactant solutions and polymeric additive solutions. Experimental Thermal and Fluid Science, 2018, 96: 20-32. [27] Z. G. Xu, J. Qin, X. Zhou, H. J. Xu. Forced convective heat transfer of tubes sintered with partially-filled gradient metal foams considering local thermal non-equilibrium. Applied Thermal Engineering, 2018,137: 101-111. [28] Z. G. Xu, J. Qin. Pool boiling investigation on gradient metal foams with double layers. Applied Thermal Engineering, 2018,131: 595–606. [29] P. C. Li, K. Y .Wang, J . L. Zhang, Z. G. Xu. Heat transfer characteristics of thermally developing forced convection in a porous circular tube with asymmetric entrance temperature under LTNE condition. Applied Thermal Engineering, 2019,154:326-331. [30] X. Zhou, Z. G. Xu*, M. Q. Wang, Y. Zhan, J. Qin. Impact of immiscible phase on the reactive transport process. Heat Transfer Research, 2020,51:1105–1121. [31] X. Zhou, Z. G. Xu*, Y. L. Xia, B. F. Li, J. Qin. Pore-scale investigation on reactive flow in porous media with immiscible phase using lattice Boltzmann method. Journal of Petroleum Science and Engineering, 2020,191:107224. [32] J. Qin, Z. Y. Xu, Z. G. Xu*. Pore-scale investigation on flow boiling heat transfer mechanisms in gradient open-cell metal foams by LBM. International Communications in Heat and Mass Transfer, 2020,119:104974. [33] J. Qin, Z. G. Xu*, X. F. Ma. Pore-scale simulation on pool boiling heat transfer and bubble dynamics in open-cell metal foam by lattice Boltzmann method. ASME Journal of Heat Transfer,2021,011602:1-15. [34] Z. G. Xu, X. Zhou. Pore-scale study of the thermochemical process in porous media with immiscible phase by lattice Boltzmann method. ASME Journal of Heat Transfer,2021,02701:1-14. [35] Z. G. Xu, J. Qin, X. F. Ma. Experimental and numerical investigation on bubble behaviors and pool boiling heat transfer of semi-modified copper square pillar arrays. International Journal of Thermal Sciences, 2021,160: 106680. [36] F. R. Chen, G. An, Z. G. Xu*. Performance analysis of three-body near-field thermophotovoltaic systems with an intermediate modulator. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021,258:107395. [37] P. Jing, X. Zhou, Z. Y. Xu, Z. G. Xu*. Numerical and experimental investigation on photothermal performance of polyimide/high-electrical-performance-coating composite films considering surface roughness. Journal of Thermal Science, 2022,31:1206-1219. [38] Z. Y. Liu, J. Qin, Z. H. Wu, S. J. Yue, Z. G. Xu*. Numerical investigation on pool boiling mechanism of hybrid structures with metal foam and square column by LBM. Journal of Thermal Science, 2022, 31:2293-2308. [39] M. Jiang, Z. G. Xu*, Z. P. Zhou. Pore-scale investigation on reactive flow in porous media considering dissolution and precipitation by LBM. Journal of Petroleum Science and Engineering, 2021,204: 108712. [40] F. R. Chen, Z. G. Xu*, Y. T. Wang. Near-field radiative heat transfer enhancement in the thermophotovoltaic system using hyperbolic waveguides. International Journal of Thermal Sciences, 2021,166:106978. [41] M. Jiang, Z. G. Xu*. Pore-scale investigation on reactive flow in non-uniform dissolved porous media considering immiscible phase by lattice Boltzmann method. Journal of Natural Gas Science and Engineering, 2021,96: 104280. [42] Z. H. Wu, Z. G. Xu*. Experimental and molecular dynamics investigation on the pyrolysis mechanism of type-II oil shale kerogen. Journal of Petroleum Science and Engineering, 2022,209: 109878. [43] Z. G. Xu, J. Qin, G. M. Qu. Numerical and experimental study of pool boiling mechanisms in V-shaped grooved porous metals. International Journal of Thermal Sciences, 2022,173:107393. [44] X. D. Chen, M. Jiang, Z. G. Xu*. Pore-scale study of heat and mass transfer in different pore throats of porous media with reactive transport. Journal of Porous Media, 2022, 25:47-65. [45] Z. L. Zhao, Z. G. Xu*. Direct simulation on particle sedimentation mechanisms in corrosive liquids. Powder Technology, 2022, 406: 117503. [46] H. Hao, Z. G. Xu*. Pore-scale investigation on dissolution and precipitation considering secondary reaction in porous media by LBM. Gas Science and Engineering, 2023,110:204893. [47] S. J. Yue, Z. G. Xu*. Numerical simulation on boiling heat transfer mechanisms in horizontal gradient porous metals. International Communications in Heat and Mass Transfer, 2023,142:106640. [48] Y. Zhou, Z. G. Xu*, Z. H. Wu. Molecular and experimental study on hydrogen sulfide formation mechanism during Chang 7 type-II oil shale kerogen pyrolysis. Fuel, 2023,340:127552. [49] Z. G. Xu*, Z. F. Hu. Near-field radiative heat transfer enhancement by multilayers and gratings in the thermophotovoltaic system. Science China Technological Sciences, 2023. [50] Z. G. Xu*, Z. L. Zhao. Numerical study on heat and mass transfer mechanisms of Janus particle sedimentation considering corrosion. Particuology, 2023,83:71-90. [51] Z. G. Xu*, Z. F. Hu. Near-field heat transfer enhancement of SiC-hBN-INSb thermophotovoltaic system considering graphene strong coupling effects. Journal of Thermal Science, 2023. [52] H. Hao, Z. G. Xu*. Pore-scale investigation on porous media morphology evolution considering dissolution and precipitation. International Journal of Multiphase Flow, 2023. [53] Z. G. Xu*, S. J. Yue, . Numerical simulation on pool boiling mechanism in tree-like structures at pore scale. ASME Journal of heat transfer, 2023. [54] Z. F. Hu, Z. G. Xu*. Near-field heat transfer enhancement by microstructures inspired the butterfly wing. International Communications in Heat and Mass Transfer, 2023. [55] Y. Zhou, Z. G. Xu*.Pyrolysis analysis of Chang 7 type-II oil shale kerogen considering pyrite using ReaxFF molecular dynamics and reaction network. Fuel Prcocess Technology, 2023. [56] C. H. He, Z. G. Xu*. Laser-induced nanobubble nucleation on a plasmonic nanoparticle with pillars by LBM. International Journal of Thermal Sciences, 2022. [57] Z. H. Zhang, S. Mou, Z. G. Xu, C.Y. Zhao. Experimental Investigation on pool boiling mechanism of the gradient. Proceedings of the 16th International Heat Transfer Conference, 2018, Beijing, China. [58] Z. G. Xu, C. Y. Zhao. Thickness effect on pool boiling heat transfer of metal foams with the low pore density. Proceedings of the International Conference on Power Engineering, 2013, Wuhan, China. [59] Z. G. Xu, Z. G. Qu, C. Y. Zhao, W. Q. Tao. Experimental study of natural convection in horizontally-positioned open-celled metal foams. International Conference on Materials for Renewable Energy & Environment, 2011, Shanghai, China. [60] Z. G. Xu, C. Y. Zhao. Pool boiling of open-celled metal foams. International Workshop on Thermal Management of High Power Microsystems Using Multiphase Flow, 2014, Shanghai, China. [61] Z. G. Xu, C. Y. Zhao. Single-directional and crossing V-shaped groove effect on pool boiling heat transfer of metal foam with high pore densities. International Conference on Materials for Renewable Energy & Environment, 2013, Chengdu, China. [62] Q. Gong, J. Qin, M. Q. Wang, C.Y. Zhao, Z.G. Xu*. Numerical investigation of key parameter effects on temperature and pressure in wellbore during carbon dioxide fracturing. Advances in Supercritical Carbon Dioxide in Thermal and Enengy Sciences, 2018, Xi'an, China. [63] C. H. He, Z. G. Xu*. Laser-induced nanobubble nucleation on a plasmonic nanoparticle with pillars . International Symposium on Thermal-Fluid Dynamics, 2022, Xi'an,China. [64] X. Zhou, Z. G. Xu*, Y. Zhan. Impact of immiscible phase on the reactive transport process . Asian Symposium on Computational Heat Transfer and Fluid Flow, 2019, Tokyo, Japan. [65] S. J. Yue, Z. G. Xu*. Numerical simulation on boiling heat transfer and bubble growth mechanism based on tree-like structure. International Symposium on Thermal-Fluid Dynamics, 2022, Xi'an,China. [66] J. Qin, Z. G. Xu*. Pore-scale modeling of flow boiling mechanism in metal foams by lattice Boltzmann method. International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, 2019, Novosibirsk, Russia. [67] J. Qin, Z. G. Xu*,Y. T. Wang. Numerical study of flow boiling mechanism in metal foams by lattice Boltzmann method. Asian Symposium on Computational Heat Transfer and Fluid Flow, 2019, Tokyo, Japan. [68] J. Qin, Z. G. Xu*. Mesoscale simulations of flow boiling heat transfer in gradient porous metal. InterPore 12th Annual Meeting, 2020, Qingdao, China. [69] P. Jing, Y. T. Wang, Z. G. Xu*, C. Y. Zhao.Thermal radiation properties of multilayer films considering surface roughness. The International Workshop on Nano-Micro Thermal Radiation, 2020, Shanghai, China. [70] Z. H. Wu, Z. G. Xu*. Molecular dynamics simulation of gas hydrate decomposition and nucleation. The International Field Exploration and Development Conference, 2020, Chengdu, China. [71] Z. G. Xu, C. Y. Zhao. Grooves' distance effect on pool boiling heat transfer of metal foams with high pore density. 8th World Conference on Experimental Heat Transfer, Fluid Dynamics and Thermodynamics, 2013, Lisbon, Portugal. [72] Z. L. Zhao, Z. G. Xu*. Numerical study on heat and mass transfer of particle sedimentation in corrosive liquids. Asian Symposium on Computational Heat Transfer and Fluid Flow, 2021, Qingdao, China. [73] Z. L. Zhao, Z. G. Xu*. Investigation on heterogenous particle sedimentation mechanism in corrosive liquids. The World Conference on Multiphase Transportation, Conversion & Utilization of Energy, 2022, Xi'an, China. [74] B. W. Yu, Z. G. Xu*. Study on thermal resistance and heat transfer on water-carbon dot interface. The World Conference on Multiphase Transportation, Conversion & Utilization of Energy, 2022, Xi'an, China. [75] Z. G. Xu, Z. G. Qu, C. Y. Zhao, W. Q. Tao. Experimental study of boiling pattern and heat transfer performance of metallic foam surface with square columns. International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, 2011, Xi'an, China. [76] M. Jiang, Z. G. Xu*. Investigation of reaction transport in pore throats of porous media. The World Conference on Multiphase Transportation, Conversion & Utilization of Energy, 2022, Xi'an, China. [77] Z. L. Zhao, Z. G. Xu*. Direct simulation on corroded heterogenous particle sedimentation mechanism by IB-LBM. International Conference on Discrete Simulation of Fluid Dynamics, 2022, Suzhou, China. [78] S. J. Yue, Z. G. Xu*. Numerical simulation on pool boiling mechanism of horizontal gradient porous metals using Lattice Boltzmann method. International Conference on Discrete Simulation of Fluid Dynamics, 2022, Suzhou, China. [79] Y. Zhao, C. Y. Zhao, Z. G. Xu. Numerical study of solid-liquid phase change by phase field model. Asian Symposium on Computational Heat Transfer and Fluid Flow, 2015, Busan, Korea [80] Z. G. Xu, R. L. Huang, C. Y. Zhao. Experimental Investigation on pool boiling heat transfer of gradient metal foams. 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, 2016, Malaga, Costa Del Sol, Spain. [81] Z. F. Hu, F. R. Chen, Z. G. Xu*. Near-field radiative heat transfer enhancement by multilayer and gratings in the thermophotovoltaic system. Asian Symposium on Computational Heat Transfer and Fluid Flow, 2021, Qingdao, China. [82] Z. G. Xu, C.Y. Zhao. Investigation on pool boiling heat transfer of metal foams with gradient pore densities. Proceedings of the International Conference on Power Engineering, 2015, Yokohama, Japan. [83] 谢阿萌, 胡智方, 成磊, 徐治国*. 高温高压疏水罐内壁裂纹产生原因分析及改进措施. 发电设备,2023. [84] 乐丝嘉,徐治国*. 基于水平梯度多孔金属和方柱的复合结构的池沸腾传热数值模拟研究. 热科学与技术, 2023. [85] 胡智方, 徐治国*.蝶翼结构对辐射性能的影响.制冷技术,2023. [86] 兰建平, 龚群, 徐治国*. CO2压裂参数对井内温度和压力的影响. 石油机械, 2018, 46(11):97-103. [87] 徐治国, 赵长颖, 赵耀. 梯密度金属泡沫池沸腾换热性能实验研究. 工程热物理学报,2015, 36(10):1-5. [88] 刘中仪, 徐治国*, 秦杰. 多孔金属和方柱复合结构池沸腾数值模拟研究. 热科学与技术,2021. [89] 赵长颖, 潘智豪, 王倩, 徐治国. 多孔介质的相变和热化学储热性能. 科学通报,2016, 61(17):1897-1911. [90] 马小飞, 王耀霆, 陈赋睿, 刘永上, 徐治国. 高能粒子辐照镀锗薄膜热光属性衰退机制研究. 真空科学与技术学报,2022. [91] 屈治国, 徐治国, 陶文铨. 通孔金属泡沫中的空气自然对流传热试验研究. 西安交通大学学报, 2009, 43(1):1-4. [92] 王耀霆, 马小飞,荆鹏,刘永上,徐治国*. 热湿侵蚀对镀锗薄膜热光属性的影响. 热科学与技术, 2021. [93] 牟帅, 赵长颖, 徐治国*. 局部表面改性紫铜方柱阵列池沸腾传热特性和机理. 化工学报, 2019, 70(4):1291-1301.[封面文章] [94] 纪育楠, 赵长颖, 徐治国. 硝酸钙与硝酸钠二元相变蓄热材料的制备与性能. 化工进展, 2014, 33(1):228-232. [95] 黄金印, 屈治国, 李定国, 徐治国, 陶文铨. 紫铜纤维毡水平表面的池沸腾换热性能. 化工学报, 2011, 62(S1):26-30. [96] 黄瑞连, 赵长颖, 徐治国. 梯度金属泡沫池沸腾池沸腾过程中气泡脱离特性. 化工学报, 2018, 69(7): 2890-2898. [97] 徐治国, 屈治国, 赵长颖, 陶文铨, 卢天健. 通孔金属泡沫表面的池沸腾实验研究. 工程热物理学报, 2009, 30(10):1713-1716. [98] 代林娜, 唐桂华, 赵长颖, 徐治国, 陶文铨. 充满金属泡沫的方腔自然对流数值模拟. 工程热物理学报, 2008, 29(10):1722-1724. [99] 徐治国, 王美琴, 赵长颖. 形貌对通孔金属泡沫辐射性能的影响. 热科学与技术,2015,14.(4):267-271. [100] 刘永上, 王耀霆, 徐治国*. 薄膜光学常数的改进粒子群反演算法. 中国科技论文, 2020,15(4):379-384. [101] 牟帅, 胡冠西, 徐治国*, 赵长颖. 表面改性紫铜方柱阵列的池沸腾传热特性. 中国科技论文, 2018,13(18):2142-2147. [102] 徐治国, 赵长颖. 梯度孔密度金属泡沫的池沸腾传热性能研究. 热科学与技术,2015,14(2):106-112. [103] 徐治国, 赵长颖, 纪育楠, 赵耀. 中低温相变蓄热的研究进展. 储能科学与技术,2014,3: 179-190. [104] 徐治国, 赵长颖. 材质对低孔密度金属泡沫池沸腾换热性能的影响. 热科学与技术,2013,12(4):295-301.

学术兼职

[1] 《International Journal of Heat and Mass Transfer》 审稿人 [2] 《International Journal of Thermal Sciences》 审稿人 [3] 《Applied Thermal Engineering》 审稿人 [4] 《Journal of Petroleum Science and Engineering》 审稿人 [5] 《Journal of Natural Gas Science and Engineering》审稿人 [6] 《ASME Jounal of Heat Transfer》 审稿人 [7] 《Experimental Thermal and Fluid Science》审稿人 [8] 《Journal of Quantitative Spectroscopy and Radiative Transfer》审稿人 [9] 《中国石油大学学报》审稿人 [10]《热科学与技术》审稿人 [11]《化工学报》审稿人 [12]《同济大学学报》审稿人

推荐链接
down
wechat
bug