个人简介
教育背景
2010-2015 上海交通大学 机械与动力工程学院 博士
2010-2010 普渡大学 机械工程学院 访问学生
2006-2010 上海交通大学 机械与动力工程学院 学士
工作经历
2019-至今 上海交通大学 机械与动力工程学院 副教授
2018-2018 上海交通大学 机械与动力工程学院 助理教授
2016-2017 麻省理工学院 机械工程系 博士后
2015-2017 上海交通大学 机械与动力工程学院 博士后
科研项目
2021-2023 中国科协青年人才托举工程项目,负责人
2020-2023 国家自然科学基金面上项目:基于毛细升膜局部加热和冷凝热回收的高效太阳能蒸馏机理研究,负责人
2017-2019 国家自然科学基金青年项目:太阳能高密度跨季节储存的吸收/吸附储热机理研究,负责人
2016-2019 国家重点研发计划课题:余热回收的高效吸收式热泵,子课题负责人
2019-2021 上海市浦江人才计划,负责人
2017-2018 中国博士后科学基金第10批特别资助,负责人
2016-2017 中国博士后科学基金第59批面上资助,负责人
2022-2023 企业合作项目:三相吸收式储能原理实验研究,负责人
2023-2027 国家自然科学基金重大项目:规模化热能存储转换与能质调控机理和方法,主参
2021-2025 国家自然科学基金重点项目:大温升热泵及蒸汽发生系统的循环构建与应用适应性研究, 主参
2015-2018 国家自然科学基金国际合作与交流项目:太阳能与生物质能互补的冷热电联供系统的热力特性及集成优化研究,主参
教学工作
新能源系统(全英文),研究生课程,48学时
设计与制造I(全英文),本科生课程,64学时
软件版权登记及专利
[1] 吸收发生换热型吸收式制冷循环. 发明专利, 201310332798.5.
[2] 一种吸收发生换热型吸收式制冷机及其循环方式. 发明专利, 201410138506.9.
[3] 吸收式热泵循环系统. 发明专利, 201710082346.4.
[4] 采用吸收式制冷冷却的吸收式储热系统及其控制方法. 发明专利, 201710662835.7.
[5] 双压型吸收式储热系统及其控制方法. 发明专利, 201710661627.5.
[6] 再吸收与吸收发生换热结合的吸收式循环系统及其方法. 发明专利, 201710662834.2.
[7] 热耦合的压缩吸收式余热回收型热泵循环. 发明专利, 201710662315.6.
[8] 一种海水淡化与灌溉一体化全自动浮台及其应用. 发明专利, 202010088861.5
荣誉奖励
2022 机动学院青年教师教学竞赛 一等奖
2021 中国科协青年人才托举工程
2021 中国能源研究会技术创新 二等奖
2020 麻省理工学院年度研究新闻
2020 上海交通大学 优秀班主任
2019 国际制冷学会(IIR) James Joule 青年奖
2019 上海市浦江人才计划
2019 福布斯中国 U30
指导学生获奖
2022 夏安世奖学金-三花奖
2022 机动学院研究生学术之星
2022 王补宣-过增元青年优秀论文奖 二等奖
2022 全国大学生节能减排大赛 一等奖
2021 全国大学生节能减排大赛 特等奖,专项金奖
2020 全国大学生节能减排大赛 特等奖
2019 全国大学生节能减排大赛 二等奖
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
太阳能海水淡化/ Solar desalination
[1] X. Wang, Z. Lin, J. Gao, Z. Xu, X. Li, N. Xu, J. Li, Y. Song, H. Fu, W. Zhao, S. Wang, B. Zhu, R. Wang, J. Zhu. Solar steam-driven membrane filtration for high flux water purification. Nature Water, 2023, 1: 391–398.
[2] W.Y. Han, J.T. Gao, J. Yu, R.Z. Wang, Z.Y. Xu. Efficient and low-cost solar desalination device with enhanced condensation on nail arrays. Desalination, 2022, 544: 116132.
[3] L. Zhang, X. Li, Y. Zhong, A. Leroy, Z.Y. Xu, L. Zhao, E.N. Wang. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nature Communications, 2022, 13: 849.
[4] Q. Ma, Z.Y. Xu, R.Z. Wang, P. Poredoš. Direct solar-heating on small-scale flat-plate vacuum membrane distillation: absorber-plate versus photothermal membranes. Energy, 2022, 239: 121891.
[5] L. Zhang, Z.Y. Xu, L. Zhao, B. Bhatia, Y. Zhong, S. Gong, E.N. Wang. Passive, high-efficiency thermally-localized solar desalination. Energy & Environmental Science, 2021, 14: 1771-1793.
[6] Q. Ma, Z.Y. Xu, R.Z. Wang. Distributed solar desalination with membrane distillation: current status and future perspectives. Water Research, 2021, 198: 117154.
[7] Z.Y. Xu, L. Zhang, L. Zhao, B.J. Li, B. Bhatia, C.X. Wang, K.L. Wilke, Y. Song, O. Labban. J.H. Lienhard, R.Z. Wang, E.N. Wang. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy & Environmental Science , 2020, 13: 830-839. (被中国科学报、科学网、 MIT News 、Science Daily、 AAAS EurekAlert 、SciTech Daily和 Scientific American 等报道) Link
[8] L. Zhang, Z.Y. Xu, B. Bhatia, B. Li, L. Zhao, E.N. Wang. Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills. Applied Energy, 2020, 22: 114864.
[9] L. Zhang, Z.Y. Xu, Z. Lu, J. Du, E.N. Wang. Size distribution theory for jumping-droplet condensation. Applied Physics Letters, 2019, 114(16): 163701.
[10] Z.Y. Xu, L. Zhang, K. Wilke, E.N. Wang. Multiscale dynamic growth and energy transport of droplets during condensation. Langmuir, 2018, 34 (30): 9085–9095.
吸收式热泵与制冷/ Absorption heat pump and cooling
[11] X. Zhang, R.Z. Wang, Z.Y. Xu. Air-source hybrid absorption-compression heat pumps with three-stage thermal coupling configuration for temperature lift over 150 °C. Energy Conversion and Management, 2022, 271: 116304.
[12] Z.Y. Xu, J.T. Gao, B. Hu, R.Z. Wang. Multi-criterion comparison of compression and absorption heat pumps for ultra-low grade waste heat recovery. Energy, 2022, 238: 121804.
[13] J.T. Gao, Z.Y. Xu, R.Z. Wang. An air-source hybrid absorption-compression heat pump with large temperature lift. Applied Energy, 2021, 291: 116810.
[14] J.T. Gao, Z.Y. Xu, R.Z. Wang. Enlarged temperature lift of hybrid compression-absorption heat transformer via deep thermal coupling. Energy Conversion and Management, 2021, 234: 113954.
[15] Z.Y. Xu, J.T. Gao, H.C. Mao, D.S. Liu, R.Z. Wang. Energy grade splitting of hot water via a double effect absorption heat transformer. Energy Conversion and Management, 2021, 230: 113821.
[16] Z.Y. Xu, J.T. Gao, H.C. Mao, D.S. Liu, R.Z. Wang. Double-section absorption heat pump for the deep recovery of low-grade waste heat. Energy Conversion and Management, 2020, 220: 113072.
[17] Z.Y. Xu, R.Z. Wang, C. Yang. Perspectives for low-temperature waste heat recovery. Energy, 2019, 176: 1037-1043.
[18] Z.Y. Xu, H.C. Mao, D.S. Liu, R.Z. Wang. Waste heat recovery of power plant with large scale serial absorption heat pumps. Energy, 2018, 165: 1097-1105.
[19] Z.Y. Xu, R.Z. Wang. Absorption heat pump for waste heat reuse: current states and future development. Frontiers in Energy, 2017, 11: 414-436.
[20] Z.Y. Xu, R.Z. Wang. Absorption refrigeration cycles: categorized based on the cycle construction. International Journal of Refrigeration, 2016, 62: 114-136.
吸收式热存储与输运/ Absorption heat storage and transportation
[21] M. Abel, R.Z. Wang, Z.Y. Xu. Experimental analysis of a high-performance open sorption thermal storage system with absorption-crystallization-adsorption processes. Energy Conversion and Management, 2022, 270, 116220.
[22] M. Abel, R.Z. Wang, Z.Y. Xu. Evaluation of a high-performance evaporative cooler-assisted open three-phase absorption thermal energy storage cycle for cooling. Applied Energy, 2022, 325: 119818.
[23] M. Abel, Z.Y. Xu, R.Z. Wang. Thermodynamic evaluation of three-phase absorption thermal storage in humid air with energy storage density over 600 kWh/m3. Energy Conversion and Management, 2022, 258: 115476.
[24] J.T. Gao, Z.Y. Xu. Performance evaluation of absorption thermal energy storage/transmission using ionic liquid absorbents. Energy and Built Environment, 2022. ( AAAS EurekAlert 报道 )
[25] Z.Y. Xu, R.Z. Wang. High-performance absorption thermal storage with once-through discharging. ACS Sustainable Chemistry & Engineering, 2022, 10: 720–730.
[26] J.T. Gao, Z.Y. Xu, R.Z. Wang. Towards high-performance sorption cold energy storage and transmission with ionic liquid absorbents. Energy Conversion and Management, 2021, 241: 114296.
[27] J.T. Gao, Z.Y. Xu, R.Z. Wang. Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density. Applied Energy, 2020, 262: 114476.
[28] M. Abel, Z.Y. Xu, R.Z. Wang. Thermally-pressurized sorption heat storage cycle with low charging temperature. Energy, 2019, 189: 116304.
[29] J.T. Gao, Z.Y. Xu, R.Z. Wang. Enhanced sorption heat transportation cycles with large concentration glide. Energy Conversion and Management, 2019, 201: 112145.
[30] Z.Y. Xu, R.Z. Wang. Absorption seasonal thermal storage cycle with high energy storage density through multi-stage output. Energy, 2019,167: 1086-1096.
书籍章节/ Book Chapters
[31] 中国制冷学会. 碳中和制冷技术发展路线. 2022. (参编)
[32] 王如竹, 何雅玲. 低品位余热的网络化利用. 北京: 科学出版社, 2021. (参编)
[33] 中国制冷学会. 2018-2019制冷及低温工程学科研究进展报告. 北京: 中国科学技术出版社, 2020. (参编)
[34] Z.Y. Xu. Solar-gas driven absorption system for cooling and heating in a hotel. In Handbook of Energy Systems in Green Buildings, Springer, 2018: 1795-1809.
[35] Z.Y. Xu, R.Z. Wang. Chapter 11- Solar-powered absorption cooling systems. In Advances in Solar Heating and Cooling, Elsevier-Woodhead Publishing publications, 2016.
[36] R.Z. Wang, Z.Y. Xu, T.S. Ge. Chapter 1- Introduction to solar heating and cooling systems. In Advances in Solar Heating and Cooling, Elsevier-Woodhead Publishing publications, 2016.
[37] R.Z. Wang, Q.W. Pan, Z.Y. Xu. Chapter 12- Solar-powered adsorption cooling systems. In Advances in Solar Heating and Cooling, Elsevier-Woodhead Publishing publications, 2016.