当前位置: X-MOL首页全球导师 国内导师 › 童振

个人简介

教育背景 (2023年,招聘3名博士后,详见大学官网:https://me.sjtu.edu.cn/hr/74345.html) 2013—2015 英国斯特拉斯克莱德大学设计、制造与工程管理,博士学位 2012—2013 英国哈德斯菲尔德大学计算机与工程,博士联合培养 2011—2012 英国赫瑞瓦特大学工程与物理科学,博士联合培养 2010—2017 哈尔滨工业大学机械制造及其自动化,工学博士 2008—2010 哈尔滨工业大学机械制造及其自动化,工学硕士 工作经历 2022年11月—至今 上海交通大学机械与动力工程学院,教授,博导 2018年06月—2022年11月 英国哈德斯菲尔德大学精密技术中心,高级研究员,博导,超精密加工课题组及实验室负责人 2015年05月—2018年05月 英国哈德斯菲尔德大学精密技术中心,研究员,超精密加工课题组负责人 科研项目 • 2015-2022在海外工作期间,连续申请获得了欧盟委员会(European Commission, EC),英国国家工程与物理研究委员会(Engineering and Physical Science Research Council, EPSRC),英国科学与技术装备委员会(Science Technology Facilities Council, STFC)等项目资助,累计折合人民币约5500万。 • 2016-2022推动和促成了多项英国任职高校与国内985、211大学及出国留学机构的中英教育交流与合作项目。 • 2023中国高层次人才“长江学者”奖励项目。 教学工作 在英国留学工作期间,参加了英国赫瑞瓦特大学(Heriot-Watt University)提供的系统教学技能培训,并于2013年8月完成论文,成功申请获得了英国教师资格证(Associate Fellow of UK High Education Academy)。主要承担了如下课程的助教: • 斯特拉思克莱德大学 University of Strathclyde 《工程制图》(DM100 Engineering drawing),《工程管理》(DM948 Engineering management) • 赫瑞瓦特大学 Heriot-Watt University 《数控编程》(B58DB1 NC coding),《工程制图》(B59DF2 Engineering Drawling),《工程管理》(B51GK Engineering management) 荣誉奖励 2023中国高层次人才“长江学者”称号。

研究领域

超精密加工与智能检测技术 1、超精密智能加工及检测一体化装备 • 超精密加工机床及功能部件(Ultra-precision machine tools & core components) • 嵌入式光学测量仪器 (Embedded optical metrology for ultra-precision machining) • 超精密加工智能分析及决策系统 (Smart ultra-precision machining system,machine learning,software development) • 表面在线检测和质量控制技术(In-process surface measurement and quality assurance) 2、超精密加工工艺与应用表面科学 • 微纳米结构表面高精度大规模制造技术(High-precision scale-up micro and nano manufacturing) • 超精密光滑自由曲面设计、制造及表面检测(Freeform design,manufacturing,surface metrology) • 超精密加工过程多尺度模拟仿真技术 (MD,DDD,FEM simulation on machining mechanism) 3、超精密加工刀具技术(设计、制备、切削性能评价) • 智能刀具系统(Smart tooling system,ultrasonic,laser-assisted,fast-tool-servo) • 特种金刚石微纳米刀具(FIB/laser-based single crystal diamond tool fabrication) • 硬脆材料磨粒磨削技术(Abrasive tools for ultra-precision grinding & polishing of brittle materials)

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

• Embedded metrology oriented freeform machining [1] Kumar, S., Tong, Z.*, Jiang, X., (2022), Advances in the design and manufacturing of novel freeform optics, International Journal of Extreme Manufacturing, 4 032004. [2] Tong, Z., Zhong, W., Zeng, W., & Jiang, X. (2021), Closed-loop form error measurement and compensation for FTS freeform machining. CIRP Annals, 70(1): 455-458. [3] Zhong, W., Tong, Z., & Jiang, X. (2021). Integration of On-machine Surface Measurement into Fast Tool Servo Machining. Procedia CIRP, 101, 238-241. [4] Geng, Z., Tong, Z., & Jiang, X. (2021). Review of geometric error measurement and compensation techniques of ultra-precision machine tools. Light: Advanced Manufacturing, 2(2), 211-227. [5] Tong, Z., Zhong, W., To, S., Zeng, W., (2020) Fast-tool-servo micro-grooving freeform surfaces with embedded metrology, CIRP Annals Volume 69, Issue 1, 505-508. [6] Zhong, W., Tong, Z., Chen, W. & Jiang, X., (2019) Development of an adaptive toolpath planning strategy for diamond face turning of freeform surface. 19th International Conference and Exhibition, EUSPEN 2019. p. 126-127. [7] Zhu, Z., Tong, Z., To, S., Jiang, X., (2019) Tuned diamond turning of micro-structured surfaces on brittle materials for the improvement of machining efficiency, CIRP Annals, 68(1): 559-562. [8] Jiang, X., Tong, Z., Li, D., (2019) On-Machine Measurement System and Its Application in Ultra-Precision Manufacturing, In Book: Precision Machines, DOI: 10.1007/978-981-10-5192-0_16-1. [9] Li, D., Jiang X., Tong, Z., Blunt, L., (2019) Development and Application of Interferometric On-Machine Surface Measurement for Ultraprecision Turning Process, J. Manuf. Sci. Eng. 141(1): 014502. [10] Li, D., Wang, B., Tong, Z., Blunt, L., Jiang, X., (2019) On-machine surface measurement and applications for ultra-precision machining: a state-of-the-art review, The International Journal of Advanced Manufacturing Technology, 104:831–847. [11] Li, D., Tong, Z., Jiang, X., Blunt, L., (2018) Calibration of an interferometric on-machine probing system on an ultra-precision turning machine, Measurement, 118:96–104. [12] Li, D., Jiang, X., Tong, Z., & Blunt, L., (2018) Kinematics error compensation for a surface measurement probe on an ultra-precision turning machine. Micromachines, 9(7), 334. • Micro/nanomanufacturing technologies [13] Geng, Z., Tong, Z., Huang, G., Zhong, W., Cui, C., Xu, X., & Jiang, X. (2022). Micro-grooving of brittle materials using textured diamond grinding wheels shaped by an integrated nanosecond laser system. The International Journal of Advanced Manufacturing Technology, 1-11. [14] Tong, Z., Zeng, W., Zhong, W., & Jiang, X., (2021), A closed-loop feature-based FTS patterning and characterisation of functional structured surfaces, Surface Topography: Metrology and Properties9: 025012. [15] Zhu, Z., To, S., Tong, Z., & Jiang, X., (2019) Modulated diamond cutting for the generation of complicated micro/nanofluidic channels. Precision Engineering, 56, 136-142. [16] Zeng, S., Tong, Z., Blunt, L., (2019) Polishing Technologies and Their Applications in Artificial Implants, In Book: Metrology, DOI: 10.1007/978-981-10-5192-0_17-1. [17] Chen, W., Tong, Z., Huo, D., Jiang, X. (2019) A virtual system for machine tool design considering the interaction between manufacturing processes and machine tool dynamics, The 22nd International Symposium on Advances in Abrasive Technology, Shenzhen China, 6-9 December 2019. [18] Luo, X., Tong, Z., (2018) Nano-grooving by Using Multi-tip Diamond Tools, In: Yan J. (eds) Micro and Nano Fabrication Technology, Micro/Nano Technologies, Springer, Singapore, 1:1–44. [19] Tong, Z., Luo, X., Sun, J., Liang, Y., Jiang, X., (2015) Investigation of a scale-up manufacturing approach for nanostructures by using a nanoscale multi-tip diamond tool, The International Journal of Advanced Manufacturing Technology, 80(1-4):699–710. • Computational modelling and simulation [20] Zhang, Z., Tong, Z., & Jiang, X. (2022). Development of the Concurrent Multiscale Discrete-Continuum Model and Its Application in Plasticity Size Effect. Crystals, 12(3), 329. [21] Bai, J., & Tong, Z. (2022), A dislocation density-based multiscale cutting model for ultra-precision machining of AISI 4140 steel, Proceedings of the 22nd International Conference and Exhibition of the European Society for Precision Engineering and Nanotechnology, 543-544. [22] Bai, J., & Tong, Z. (2021), A novel multiscale material plasticity simulation model for high-performance cutting AISI 4140 steel. The International Journal of Advanced Manufacturing Technology, 116(11), 3891-3904. [23] Lu, S., Wang, X., and Tong, Z. et al., (2020) Finite element investigation on the wave-particle interactions in ultrasonic inspection of SiCp/Al composites, Materials Research Express 7, no. 3: 036534. [24] Chen, W., Tong, Z., Huo, D., Zhong, W., Jiang, X., (2019) A forward closed-loop virtual simulation system for milling process considering dynamics processing-machine interactions, The International Journal of Advanced Manufacturing Technology, 104:2317–2328. [25] Bai, J., Bai, Q., Tong, Z., (2018) Experimental and multiscale numerical investigation of wear mechanism and cutting performance of polycrystalline diamond tools in micro-end milling of titanium alloy Ti-6Al-4V, International Journal of Refractory Metals and Hard Materials, 74: 40–51. [26] J Bai, J., Bai, Q., Tong, Z., Guo, H., (2018) Theoretical model for subsurface microstructure prediction in micro-machining Ti-6Al-4V alloy - Experimental validation, International Journal of Mechanical Sciences, 148 64-72. [27] Bai, J., Bai, Q., Tong, Z., Chen, G., (2018) The influence of cutting parameters on the defect structure of subsurface in orthogonal cutting of titanium alloy, Journal of Materials Research. 33(6): 720–732. [28] Bai, J., Bai, Q., Tong, Z., (2017) Multiscale Analyses of Surface Failure Mechanism of Single-Crystal Silicon during Micro-Milling Process, Materials, 10(12):1424. [29] Bai, J., Bai, Q., Tong, Z., (2017) Dislocation Dynamics-Based Modelling and Simulations of Subsurface Damages Microstructure of Orthogonal Cutting of Titanium Alloy, Micromachines. 8(10):309. [30] Bai, J., Bai, Q., Tong, Z., Chao, H., Xin, H., (2016) Evolution of surface grain structure and mechanical properties in orthogonal cutting of titanium alloy, Journal of Materials Research, 31(24):3919–3929. [31] Bai, J., Xin, H., Bai, Q., Tong, Z., (2016) An atomistic investigation of the effect of strain on frictional properties of suspended graphene, AIP Advances, 6(5):055308. [32] Tong, Z., Liang, Y., Jiang, X., Luo, X., (2014) An atomistic investigation on the mechanism of machining nanostructures when using single tip and multi-tip diamond tools, Applied Surface Science, 290:458–465. [33] Tong, Z., Liang, Y., Yang, X., Luo, X., (2014) Investigation on the thermal effects during nanometric cutting process while using nanoscale diamond tools, The International Journal of Advanced Manufacturing Technology, 74(9-12):1709–1718. [34] Bai, Q., Zhang, X., Tong, Z., Liang, Y., Pen, H., (2013) Multiscale simulation of the compress behavior on single crystal copper microstructure based on quasi-continuum method, Journal of Mechanical Strength, 35(6): 810-815. [35] Bai, Q., Tong, Z., Liang, Y., Chen, J., Wang, Z., (2010) Simulation of scale dependency on tensile mechanical properties of single crystal copper nano-rod, ActaMetall Sin. 46(10):1173–1180. • Cutting tool technology [36] Geng, Z., Tong, Z., Huang, G., Zhong, W., Cui, C., Xu, X., & Jiang, X. (2022). Micro-grooving of brittle materials using textured diamond grinding wheels shaped by an integrated nanosecond laser system. The International Journal of Advanced Manufacturing Technology, 1-11. [37] Wang, Y., Huang, Tong, Z. et al., (2019) Numerical Analysis of the Effects of Pulsed Laser Spot Heating Parameters on Brazing of Diamond Tools, Metals (Basel). 9(5) 612. doi:10.3390/met9050612. [38] Tong, Z., Jiang, X., Luo, X., Bai, Q., Xu, Z., Blunt, L., Liang, Y., (2016) Review on FIB-induced damage in diamond material, Current Nanoscience, 12(6):685–695. [39] Tong, Z., Xu, Z., Wu, W., Luo, X., (2015) Molecular dynamic simulation of low-energy FIB irradiation induced damage in diamond, Nuclear Instruments and Methods in Physics Research Section B. 358:38–44. [40] Rajput, N., Tong, Z., Verma, H., Luo, X., (2015) Ion beam assisted fabrication and manipulation of metallic nanowires, Micro and Nano letter, 10(7):334–338. [41] Rajput, N., Tong, Z., Luo, X., (2015) Investigation of ion induced bending mechanism for nanostructures, Mater. Res. Express, 2:015002. [42] Tong, Z., Luo, X., (2015) Investigation of focused ion beam induced damage in single crystal diamond tools, Applied Surface Science, 347:727–735. [43] Luo, X., Tong, Z., Liang, Y., (2014) Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures, Applied Surface Science, 321:495–502.

学术兼职

• 欧洲精密工程与纳米技术学会 (EUSPEN, European Society for Precision Engineering and Nanotechnology) 国际专家委员会委员 (International Scientific Committee Member) -Conference Local Chair of EUSPEN SIG meeting on freeform and micro and nanomanufacturing, Sep. 2022. (大会主席) -Co-organiser and Session chair of EUSPEN SIG meeting on freeform and micro and nanomanufacturing, Oct. 2020 • 国际生产工程科学院 (CIRP, The International Academy for Production Engineering) 青年会员 • 国际纳米制造协会 (ISNM, International Society for Nanomanufacturing) 会员 • 国际磨粒技术协会 (ICAT, International Committee for Abrasive Technology)会员 • 《极端制造》青年编委,《Crystal》专题顾问,《International Journal of Abrasive Technology》编委 • 特邀审稿人 Optical Express, Precision Engineering, Nature Communications, Diamond Materials, Crystal, Journal of manufacturing processes, International Journal of Advanced Manufacturing Technologies, Measurement, Applied Surface Science, Journal of Processing Technologies, Nanotechnology, Micromachines, Materials Today Communications, Carbon, Microelectronic Engineering etc.

推荐链接
down
wechat
bug