当前位置: X-MOL首页全球导师 国内导师 › 胡开明

个人简介

教育背景 2015.09-2017.05 美国加州大学伯克利分校 机械工程系,联合培养博士 2011.09-2017.12 上海交通大学 机械与动力工程学院,硕博连读 2007.09-2011.06 中南大学 机电工程学院,学士 工作经历 2021.03-至今 上海交通大学 长聘教轨副教授 2017.12-2021.02 上海交通大学 博士后 出访及挂职经历 2015.09-2017.05 美国加州大学伯克利分校 机械工程系,伯克利传感器与执行器中心 (BSAC) 科研项目 2023.04-2026.03 上海市2023年度“科技创新行动计划”自然科学基金项目(负责人) 自组织微纳褶皱结构动力学设计与谐振式抗污方法 2022.01-2024.12 国家重点研发计划重点专项 (交大方负责人) 固态激光雷达MEMS多光束扫描关键技术 2022.01-2025.12 国家自然科学基金面上项目(负责人) 柔性接近传感器力-电耦合作用下表面动态失稳机理与形貌赝像调控方法 2021.01-2022.12 国家重点实验室自主课题(负责人) 可调谐微纳米褶皱结构动力学特性与智能表面器件 2019.01-2021.12 国家自然科学基金青年科学基金项目 (负责人) 微机械谐振器多模态耦合形成机理、动力学性能调节与降噪方法 2018.01-2020.12 博士后创新人才支持计划项目 (负责人) 微纳机械谐振器模态耦合效应与群集非线性动力学行为 2018.01-2020.12 中国博士后科学基金面上项目 (负责人) 阵列式微机械谐振器群集非线性动力学特性研究 2015.01-2017.12 国家留学基金委公派出国留学项目(负责人) 微纳米机械谐振器表面效应及其动力学作用机制 2021.01-2025.12 国家自然科学基金重点项目 (技术负责人) 自组织微纳米褶皱结构动力学演化机制与调控方法研究 2020.06-2021.04 华为技术有限公司 (技术负责人) MEMS微镜长期可靠性技术合作项目 2019.10-2020.08 华为创新研究计划HIRP (技术负责人) Long-term Stability of MEMS Micro-mirrors (华为评审:优秀) 2017.01-2021.12 国家杰出青年科学基金项目 (主要参与) 微机电系统动力学 2016.01-2017.12 加州大学伯克利分校与美国德州仪器公司合作项目 (主要完成人) Graphene-based Gas Nano-sensors 2014.01-2016.12 国家万人计划项目 (主要完成人) 微机电系统动力学与控制 2014.01-2016.12 国家优秀青年科学基金 (主要完成人) 微机电系统动力学 教学工作 《学术写作、规范与伦理》研究生,16学时,1学分 软件版权登记及专利 [10] 胡开明, 屠尔琪, 张文明, 李修远, 辛宜航, 邓心陆;单层锗基石墨烯低温后固化转移方法;申请号:CN202111354758.1;申请日期:2021.11.16 [9] 胡开明,张文明,闫寒;基于褶皱形成原理的石墨烯力学性能同步表征方法;申请号:201708080803;授权日期:2020.08.07,授权号:CN107607240B [8] 胡开明, 张文明,彭勃,闫寒;界面可控型无分层式多层级石墨烯共形褶皱及其制备方法;申请号:CN202010268544.1;授权日期:2021 .04. 27 [7] 胡开明,辛宜航,张文明,李修远; 微纳米尺度界面褶皱形貌的表征实现方法; 申请号:CN202010439872.3;申请日期:2020.05.22 [6] 胡开明,张文明,李修远,辛宜航,白欣茹;大面积微纳米褶皱祛除的修复薄膜转移-加热治愈方法;申请号:CN202010595654.9;公开日期:2020.10.29 [5] 辛宜航, 胡开明, 张文明, 李修远;表面褶皱机械复合光栅系统及调谐方法;申请号: CN202110095369.5 [4] 彭勃,张文明,胡开明,闫寒;一种大量程范围的弱耦合谐振式微加速度计;申请号: CN201911097156.5;公开日期:2020.02.17 [3] 方肖勇, 张文明, 胡开明, 亓文豪, 刘春程;基于光学转角测量装置的MEMS微镜高温可靠性测试方法;申请号:CN202110209567.X [2] 邹鸿翔,张文明,魏克湘,胡开明,闫寒;一种自供能智能运动鞋;申请号:2014107841722;授权日期:2016.11.23;授权号:CN104489996B [1] 李支康,赵立波,李杰,郭帅帅,胡开明,张文明,徐廷中,赵一鹤,刘子晨,蒋庄德;一种电极形状调控的高超声波收发性能CMUTs;申请号:CN2019106972828;授权日期:2021.02.04;授权号:CN2021012101501040 荣誉奖励 2022年 上海科技青年35人引领计划(https://me.sjtu.edu.cn/news/73152.html) 2021年 上海市力学学会优秀青年学者 2020年 2019年度上海交通大学博士后考核优秀 2019年 2018年度上海交通大学博士后考核优秀 2018年 中国博士后创新人才支持计划 2017年 上海交通大学优秀毕业生 2016年 上海交通大学研究生第一届‘学术之星’(全校共十名) 2015年 国家留学基金委公派出国留学奖学金 2011年 中南大学优秀毕业生 2010年 中南大学一等奖学金 (三次:2008, 2009, 2010)

研究领域

1. 柔性微纳机电系统动力学, 2. 表/界面力学与微纳米功能器件, 3. 软光刻技术, 4. MEMS微镜激光雷达与自动驾驶辅助技术

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

After 2021 [33] Kai-Ming Hu, Wang Guo, Xin-Lu Deng, Xiu-Yuan Li, Er-Qi Tu, Yi-Hang Xin, Zhong-Ying Xue, Xue-Song Jiang, Gang Wang, Guang Meng, Zeng-Feng Di, Liwei Lin, Wen-Ming Zhang. (2023). Deterministically self-assembled 2D materials and electronics. Matter. ,6(5), 1654-1668. [32] Yan, S. (#), Hu, K.. M.(#), Chen, S., Li, T., Zhang, W., ... & Jiang, X. (2022). Photo-induced stress relaxation in reconfigurable disulfide-crosslinked supramolecular films visualized by dynamic wrinkling. Nature Communications, 13(1), 1-10. (Editor's Highlights!) [31] Chen, S.(#), Hu, K.. M.(#), Yan, S., Ma, T., Deng, X., Zhang, W., ... & Jiang, X. (2022). Dynamic metal patterns of wrinkles based on photosensitive layers. Science Bulletin. 67(21), 2186-2195 [30] Peng, B., Hu, K. M., Fang, X. Y., Li, X. Y., & Zhang, W. M. (2022). Modal characteristics of coupled MEMS resonator array under the effect of residual stress. Sensors and Actuators A: Physical, 333, 113236. [29] Chen, Y., Song, P., Wang, C., Zhang, M., Hu, K., Tian, Z., ... & Di, Z. (2022). A Versatile Approach to Create Nanobubbles on Arbitrary Two‐Dimensional Materials for Imaging Exciton Localization. Advanced Materials Interfaces, 2201079. [28] Bai, J., Hu, K.(*), Zhang, L., Shi, Z., Zhang, W., Yin, J., & Jiang, X. (2022). The Evolution of Self-Wrinkles in a Single-Layer Gradient Polymer Film Based on Viscoelasticity. Macromolecules. [27] Fang, X. Y., Hu, K. M., Yan, G., Wu, Z. Y., Wu, J. H., & Zhang, W. M. (2021). Shock Destructive Reliability Analysis of Electromagnetic MEMS Micromirror for Automotive LiDAR. Journal of Microelectromechanical Systems, 31(1), 134-142. [26] Fang, X. Y., Li, X. Y., Hu, K. M., Yan, G., Wu, J. H., & Zhang, W. M. (2021). Destructive Reliability Analysis of Electromagnetic MEMS Micromirror Under Vibration Environment. IEEE Journal of Selected Topics in Quantum Electronics, 28(5), 1-8. before 2021 [1] Hu, K. M. (#), Liu, Y. Q.(#), Zhou, L. W., Xue, Z. Y., Peng, B., Yan, H., Di, Z. F. (*), Jiang, X. S. (*), Meng. G., Zhang, W. M. (*) (2020). Delamination‐Free Functional Graphene Surface by Multiscale, Conformal Wrinkling. Advanced Functional Materials, 30(34), 2003273. (Q1, IF= 18.808) [2] Zhou, L. (#), Hu, K.M. (#), Zhang, W. M. (*), Meng, G., Yin, J., Jiang, X. S. (*) (2020). Regulating surface wrinkles using light. National Science Review, 7(7), 1247–1257. (Q1, IF=17.275) [3] Hou, H. H. (#), Hu, K. M. (#), Lin, H., Forth, J., Zhang, W. M. (*), Russell, T. P. (*), Yin, J., Jiang, X. (*) (2018). Reversible Surface Patterning by Dynamic Crosslink Gradients: Controlling Buckling in 2D. Advanced Materials, 30(36), 1803463. (Q1, IF=30.849) [4] Hu, K. M. (#), Xue, Z. Y. (#), Liu, Y. Q., Long, H., Peng, B., Yan, H., Di, Z. F. (*), Wang, X., Lin, L., Zhang, W. M. (*) (2019). Tension‐Induced Raman Enhancement of Graphene Membranes in the Stretched State. Small, 15(2), 1804337. (Q1, IF=13.281) [5] Hu, K. M.(#), Xue, Z. Y.(#), Liu, Y. Q., Peng, B. H., Le, X. H., Peng, B., Yan, H., Di, Z. F. (*), Xie, J., Lin, L., Zhang, W. M. (*) (2019). Probing built-in stress effect on the defect density of stretched monolayer graphene membranes. Carbon, 15(2), 233-240. (Q1, IF=9.594) [6] Li, T. T., Hu, K. M., Ma, X., Zhang, W. M., Yin, J., Jiang, X. S. (*) (2020). Hierarchical 3D Patterns with Dynamic Wrinkles Produced by a Photocontrolled Diels-Alder Reaction on the Surface. Advanced Materials, 32(7), 1906712. (Q1, IF=30.849) [7] Hu, K. M., Zhang, W. M. (*), Shi, X., Yan, H., Peng, Z. K., Meng, G. (2016). Adsorption-induced surface effects on the dynamical characteristics of micromechanical resonant sensors for in situ real-time detection. ASME Journal of Applied Mechanics, 83(8), 081009. [8] Hu, K. M., Zhang, W. M. (*), Dong, X. J., Peng, Z. K., Meng, G. (2015). Scale effect on tension-induced intermodal coupling in nanomechanical resonators. ASME Journal of Vibration and Acoustics, 137(2), 021008. [9] Hu, K. M., Zhang, W. M. (*), Peng, Z. K., Meng, G. (2016). Transverse vibrations of mixed-mode cracked nanobeams with surface effect. ASME Journal of Vibration and Acoustics, 138(1), 011020. [10] Hu, K. M., Zhang, W. M. (*), Zhong, Z. Y., Peng, Z. K., Meng, G. (2014). Effect of surface layer thickness on buckling and vibration of nonlocal nanowires. Physics Letters A, 378(7-8), 650-654. [11] Hu, K. M., Zhang, W. M. (*), Yan, H., Peng, Z. K., Meng, G. (2019). Nonlinear pull-in instability of suspended graphene-based sensors. EPL (Europhysics Letters), 125(2), 20011. [12] Hu, K.M., Peng, B., Li, X. Y., Xin, Y. H., Bai, X., Li, L., Zhang W.M. (*) (2020) Resonant nano- electromechanical systems from 2D materials. EPL (Europhysics Letters), 131, 58001. (特邀综述) [13] Zhang, W. M. (*), Hu, K. M., Yang, B., Peng, Z. K., Meng, G. (2016). Effects of surface relaxation and reconstruction on the vibration characteristics of nanobeams. Journal of Physics D: Applied Physics, 49(16), 165304. [14] Zhang, W. M. (*), Hu, K. M., Peng, Z. K., Meng, G. (2015). Tunable micro-and nanomechanical resonators. Sensors, 15(10), 26478-26566. [15] Peng, B., Hu, K. M., Shao, L., Yan, H., Li, L., Wei, X., Zhang, W. M. (*) (2019). A Sensitivity Tunable Accelerometer Based on Series-Parallel Electromechanically Coupled Resonators Using Mode Localization. IEEE Journal of Microelectromechanical Systems, 29(1), 3-13. [16] Li, Z. K., Zhao, L. B. (*), Li, J., Y. H., Xu, T. Z., Liu, Z. C., Luo, G. X., Zhang, S. M., Hu, K.M., Tyler, H., Shahid, S.; Lu, D. J., Zhang, W. M. (*), Jiang, Z. D. (2020). Nonlinear behavior analysis of electrostatically actuated multilayer anisotropic microplates with residual stress. Composite Structures, 112964. (IF=5.138) [17] Li, L., Zhang, W. M. (*), Wang, J., Hu, K.M., Peng, B., Shao, M. (2020). Bifurcation behavior for mass detection in nonlinear electrostatically coupled resonators. International Journal of Non-Linear Mechanics, 119, 103366. [18] Zhang, W. M. (*), Yan, H., Jiang, H. M., Hu, K. M., Peng, Z. K., Meng, G. (2016). Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation. Journal of Sound and Vibration, 368, 103-120. [19] Yan, H., Zhang, W. M. (*), Jiang, H. M., Hu, K. M., Peng, Z. K., Meng, G. (2016). Dynamical characteristics of fluid-conveying microbeams actuated by electrostatic force. Microfluidics and Nanofluidics, 20(10), 137. [20] Yan, H., Zhang, W. M. (*), Jiang, H. M., Hu, K. M. (2017). Pull-in effect of suspended microchannel resonator sensor subjected to electrostatic actuation. Sensors, 17(1), 114. [21] Yan, H., Zhang, W. M. (*), Hu, K. M., Liu, Y., Meng, G. (2013). Investigation on characteristics of flow in microchannels with random surface roughness. Acta Physic Sinica, 62(17), 174701. [22] Yan, H., Zhang, W. M. (*), Jiang, H. M., Hu, K. M., Hong, F. J., Peng, Z. K., Meng, G. (2017). A measurement criterion for accurate mass detection using vibrating suspended microchannel resonators. Journal of Sound and Vibration, 403, 1-20. [23] Zou, H. X., Zhang, W. M. (*), Li, W. B., Hu, K. M., Wei, K. X., Peng, Z. K., Meng, G. (2017). A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach. Applied Physics Letters, 110(16), 163904. [24] Yan, H., Zhang, W. M. (*), Jiang, H. M., Hu, K. M., Peng, Z. K., Meng, G. (2019). Relative vibration of suspended particles with respect to microchannel resonators and its effect on the mass measurement. ASME Journal of Vibration and Acoustics, 141(4), 041005. [25] Zou, H. X., Zhang, W. M. (*), Li, W. B., Wei, K. X., Hu, K. M., Peng, Z. K., Meng, G. (2018). Magnetically coupled flextensional transducer for wideband vibration energy harvesting: design, modeling and experiments. Journal of Sound and Vibration, 416, 55-79. 会议论文: [1] Xin, Y. H., Hu, K. M., Li, X. Y., Tu, E. Q., & Zhang, W. M. (2021, April). A Flexible Mechanical Composite Micro-Grating Tailored By One-Dimensional Ordered Wrinkle Patterns. In 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 433-436). IEEE. [2] Li, X. Y., Hu, K. M., Xin, Y. H., Tu, E. Q., & Zhang, W. M. (2021, April). Pressure Induced Transition from Wrinkling to Period-Doubling Instability in Flexible Tactile Sensors. In 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 1605-1608). IEEE. [3] Hu, K. M., Li, X. Y., Xin, Y. H., Tu, E. Q., & Zhang, W. M. (2021, April). A Novel Low-Temperature Post-Curing Transfer Method Of Graphene Wrinkling Surface For Strain Engineering. In 2021 IEEE 16th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 1432-1435). IEEE. [1] Hu, K. M. (*), Zhou, W. L., Jiang, X. S., Zhang, W. M. (2020). A Novel Fabrication Method of Graphene Wrinkle-Induced Superhydrophobic Surface for Flexible Micro/Nano Sensors. 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 901-904). IEEE. (MEMS领域顶级会议) [2] Hu, K. M. (*), Bai, K. C., Yan, H., Peng, B., Zhang, W. M. (2019). Effect of Built-in Stresses on Defects of Graphene Based Gas Sensors. In 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII) (pp. 2388-2391). IEEE. (MEMS领域顶级会议) [3] Hu, K. M., Peng, B., Yan, H., Zhang, W. M. (*), Xue, Z. Y., Di, Z. F., Sun, Y. T. (2018). Tension-Induced Raman Spectrum Enhanced Phenomena of Graphene Membrane. ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection (p. V004T08A016). (交大A类会议, ASME会议) [4] Hu, K. M. (*), Zhou, L. W., Li X.Y., Xin, Y. H., Bai, X. R., Jiang, X. S., Zhang W. M. (2020). Light-programmable functional surface by 2D wrinkling patterns [C]. CSMNT2020, Harbin. (国际会议) [5] Hu, K. M. (*), Zhang W. M. (2019). A novel fabrication method of hierarchical graphene wrinkles in PMMA-PDMS bilayer system [C]. CSMNT2019, Wuhan. (国际会议) [6] Hu, K. M., Zhang W. M. (*) (2014). Scale effect on modal interactions between mechanical modes in nanoresonators [C]. The 4th international conference on dynamics, vibration and control, Shanghai. (国际会议) [7] Hu, K. M., Zhang W. M. (*) (2017). Nonlinear pull-in behaviors of suspended graphene sensors [C]. CSMNT2017, Dalian. (国际会议) [8] 胡开明,张文明 (*) (2015). 表面吸附作用下纳米谐振器的非线性参激振动研究 [C]. 第十五届全国非线性振动暨第十二届全国非线性动力学和运动稳定性学术会议,长沙. [9] 胡开明,张文明 (*) (2017). 分子吸附作用下悬浮式多层石墨烯的非线性吸合动力学特征 [C]. 2017中国力学大会,北京. [10] 胡开明 (*), 张文明 (2019). 微纳器件的褶皱图案转移制备工艺与力学性能表征方法 [C].第四届微纳制造与微纳机器人技术青年科学家论坛,哈尔滨. 【特邀报告】

学术兼职

Nature Communication、ACS Nano、ASME Journal of Applied Mechanics等期刊审稿人 Micromachines(IF=2.891,SCI期刊)特邀编委(Guest Editors) International Journal of Dynamics and Control, 青年编委 中国工程院微纳制造领域特邀咨询专家(2022)

推荐链接
down
wechat
bug