当前位置: X-MOL首页全球导师 国内导师 › 蔡涛

个人简介

教育背景 2015.12~2016.06, 釜山国立大学(韩国),动力工程及工程热物理专业,博士交换生。 2014.09~2019.03, 上海交通大学,动力工程及工程热物理专业,博士。 2012.09~2014.06, 华中科技大学 ,动力工程专业,硕士。 2008.09~2012.06, 华中科技大学,能源与动力工程专业,本科。 工作经历 2022.01~至今,上海交通大学,叶轮机械研究所,副教授 2021.08~2023.04,釜山国立大学(Pusan National University(韩国)), 机械工程学院,Eco-friendly Smart Ship Parts Technology Innovation Center,研究教授(Research Professor) 2020.09~2021.07,釜山国立大学(Pusan National University(韩国)), 机械工程学院,Eco-friendly Smart Ship Parts Technology Innovation Center,副研究员 2019.09~2020.08,釜山国立大学(Pusan National University(韩国)), 机械工程学院,Rolls-Royce Thermal Research Center,副研究员 2019.04~2019.08,马格德堡大学(Otto von Guericke University Magdeburg (德国)),博士后研究员 科研项目 1. 韩国国家研究基金会(NRF),高温环境下基于磷光的温度/速度/压力/应力非接触测量研究,人民币约200万,2019-2023,NRF. 2019H1D3A1A0107033,主持。 2. 韩国国家研究基金会(NRF),环保智能船舶零部件技术创新RLRC项目,人民币约1 亿,2020-2027,NRF. 2020R1A5A8018822,参与。 软件版权登记及专利 [1] 发明专利: 一种温度压力联合测量技术及测量方法: 中国, ZL201710706867.2 [2] 发明专利: 一种叶轮装置: 中国, CN103115021B [3] 发明专利: Temperature sensing film and its measurement system: 韩国, KR2021/003322 [4] 发明专利: Temperature-sensitive film and measurement system using thereof:美国, P20200125US-02 [5] 发明专利: Method for manufacturing temperature and stress-sensitive film:韩国, KR2021/005007 荣誉奖励 2022.02,National Research Foundation (South Korea) ,BP fellow 2021.11,上海市工程热物理学会,优秀博士学位论文 2020.10,第五届韩国 KSME-SEMES 开放挑战赛,铜奖(带队老师) 2019.06,National Research Foundation (South Korea),KRF fellow 2018.12,上海交通大学机械学院,学术之星 2016.11,教育部 (中国),国家奖学金(博士) 2013.11,教育部 (中国),国家奖学金(硕士) 2012.12,湖北省教育厅,湖北省优秀论文

研究领域

一、先进磷光测量方法与技术 1)热物理参数磷光响应原理; 2)高温环境下基于磷光的先进非接触测量方法与技术,包括温度场,压力场,速度场,应力/应变场等; 3)多参数场测量技术:流场温度-速度同步测量技术;壁面温度-压力同步测量技术;壁面温度-应变同步测量技术 ; 二、工程及应用 1)智能传感器(柔性光学皮肤); 2)燃气轮机/航空发动机热物理参数测试技术,燃料电池的热传感和热管理等; 3)AI辅助的高频高分辨率数据重构技术。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[32] Jung J, Zhang S, Cai T, et al. Spatio-temporal resolution enhancement of 2D lifetime-based phosphor thermometry using deep neural networks. Measurement of Science and Technology. [31] Shin, H., Zhang, W., Cai, T., Kim, M., Ha, C. S., & Kim, K. C. Fabrication of Micro-size Encapsulated Phosphor Particles and Its Application of Temperature-velocity Measurement in Water. Sensors and Actuators A: Physical. [30] Roadmap on Imaging Techniques, Measurement of Science and Technology: Section 9: Phosphor thermometry (邀稿) 已发表: [29] Jung, J., Kim, M., Cai, T.*, Liu, Y., & Kim, K. C.* (2023). Data recovery of 2D lifetime-based phosphor thermometry using deep neural networks. Measurement Science and Technology, 34(7), 075201. (IF=2.398) [28] Mohammadshahi, S., Samsam-Khayani, H., Chen, B., Cai, T., & Kim, K. C. (2023). Visualization of two-dimensional temperature field on a plate with normal impingement of a supersonic jet. Journal of Visualization, 1-10. (IF=1.97) [27] Cai, T., Chen, B., Han, J., Kim, M., Yeom, E., & Kim, K. C. (2022). Effect of excitation duration on phosphorescence decay and analysis of its mechanisms. Journal of Luminescence, 252, 119423. (IF=4.17) [26] Cai T, Han J, Kim M, et al. Adaptive window technique for lifetime-based temperature and velocity simultaneous measurement using thermographic particle tracking velocimetry with a single camera[J]. Experiments in Fluids, 2022, 63(10): 1-11. (IF=2.797) [25] Cai T, Jung J, Li D, et al. Simultaneous Sensing of Oxygen Concentration and Temperature Utilizing Rise and Decay of the Phosphorescence of Y2O3: Eu3+ in High-temperature Environments[J]. Sensors and Actuators B: Chemical, 2022: 132394. (IF= 9.221) [24] Cai T, Li D, Jung J, et al. Two-dimensional visualization of oxygen concentration field at high-temperature environment using phosphor Y2O3: Eu3+[J]. Sensors and Actuators B: Chemical, 2022, 364: 131884. (IF= 9.221) [23] Cai T, Han J, Kim M, et al. Two-dimensional lifetime-based kHz surface temperature measurement technique using phosphor thermometry[J]. Applied Physics Letters, 2021, 119(24): 244101. (IF= 3.971) [22] Cai T, Yan Y Z, Jung J, et al. Phosphorescence-based temperature and tactile multi-functional flexible sensing skin[J]. Sensors and Actuators A: Physical, 2021, 332: 113205. (IF= 4.29) [21] Park Y, Cai T, Kim K. A Study on Non-contact Surface Temperature Field Measurement of a Body Immerged in Water Using Thermographic Phosphor Thermometry[J]. Journal of the Korean Society of Visualization, 2020, 18(3): 61-68. [20] Cai T, Park Y, Mohammadshahi S, et al. Rise time-based phosphor thermometry using Mg4FGeO6: Mn4+[J]. Measurement Science and Technology, 2020, 32(1): 015201. (IF= 2.398) [19] Mohammad S, Samsam H, Cai T, et al. Experimental and numerical study on flow characteristics and heat transfer of an oscillating jet in a channel[J]. International Journal of Heat and Fluid Flow, 2020, 86: 108701. (IF=2.789) [18] Cai T, Deng Z, Park Y, et al. Acquisition of kHz-frequency two-dimensional surface temperature field using phosphor thermometry and proper orthogonal decomposition assisted long short-term memory neural networks[J]. International Journal of Heat and Mass Transfer, 2021, 165: 120662. (IF=5.584) [17] Cai T Yan Y,et al. Phosphorescence-Based Flexible and Transparent Optical Temperature-Sensing Skin Capable of Extreme Environments[J]. ACS Applied Polymer Materials, 2021, 3(5): 2461-2469. (IF= 4.089) [16] Mohammad S, Samsam-Khayani H, Cai T, et al. Experimental study on flow characteristics and heat transfer of an oscillating jet in a cross flow[J]. International Journal of Heat and Mass Transfer, 2021, 173: 121208. (IF=5.584) [15] Cai T, Lee T, et al. Simultaneous measurement of 2D temperature and strain fields based on thermographic phosphor and digital image correlation[J]. Measurement Science and Technology, 2021. (IF= 2.398) [14] Cai T, Khodsiani M, Hallak B, et al. Phosphor thermometry at the surface of single reacting large-diameter spherical coke particles to characterise combustion for packed bed furnaces[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4225-4232. (IF= 3.757) [13] 蔡涛、赵晓峰、刘应征、彭迪. 基于磷光光学特性的热障涂层热力参数测量技术[J]. 中国材料进展, 2020, v.39;No.466(10):26-37 (受邀综述) [12] Guo S†, Cai T†, et al. Generalization of the quantitative stress-intensity relationship of mechanoluminescent sensor SrAl2O4: Eu2+, Dy3+ in elastic domain[J]. Measurement Science and Technology, 2019. (IF= 2.398) [11] Li Y†, Cai T†, et al. Effect of oxygen partial pressure on the phosphorescence of different lanthanide ion (Ln3+)-doped yttria-stabilised zirconia[J]. Sensors and Actuators B: Chemical, 2020, 308: 127666. (IF=9.22) [10] Cai T, Li Y, Guo S, et al. Pressure effect on phosphor thermometry using Mg4FGeO6: Mn[J]. Measurement Science and Technology, 2019, 30(2): 027001. (IF= 2.398) [9] Cai T, Guo S, Li Y, et al. Ultra-sensitive mechanoluminescent ceramic sensor based on air-plasma-sprayed SrAl2O4: Eu2+, Dy3+ coating[J]. Sensors and Actuators A: Physical, 2020, 315: 112246. (IF=4.29) [8] Peng D, Zhong Z, Cai T, et al. Integration of pressure-sensitive paint with persistent phosphor: A light-charged pressure-sensing system[J]. Review of Scientific Instruments, 2018, 89(8): 085003. (IF=1.859) [7] Cai T, Guo S, Li Y, et al. Quantitative stress measurement of elastic deformation using mechanoluminescent sensor: An intensity ratio model[J]. Review of Scientific Instruments, 2018, 89(4). (IF=1.859) [6] Cai T, Peng D, Yavuzkurt S, et al. Unsteady 2-D film-cooling effectiveness behind a single row of holes at different blowing ratios: Measurements using fast-response pressure-sensitive paint[J]. International Journal of Heat and Mass Transfer, 2018, 120: 1325-1340. (IF=5.584) [5] Peng D, Yang L, Cai T, et al. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing[J]. Sensors, 2016, 16(10): 1490. (IF=3.576) [4] Cai T, Peng D, Liu Y Z, et al. A novel lifetime-based phosphor thermography using three-gate scheme and a low frame-rate camera[J]. Experimental Thermal and Fluid Science, 2017, 80: 53-60. (IF= 3.57) [3] Cai T, Kim D, Kim M, et al. Effect of surface moisture on chemically bonded phosphor for thermographic phosphor thermometry[J]. Measurement Science and Technology, 2016, 27(9): 097003. (IF= 2.398) [2] Cai T, Dong K, Kim M, et al. Two-dimensional thermographic phosphor thermometry in a cryogenic environment[J]. Measurement Science and Technology, 2016, 28(1). (IF= 2.398) [1] Cai T, Peng D, Liu Y Z, et al. A correction method of thermal radiation errors for high-temperature measurement using thermographic phosphors[J]. Journal of Visualization, 2016, 19(3): 383-392. (IF= 1.974) 会议文章: [1] Cai T†, Zhang WJ, Kim M, et al. Fabrication of Micro-size Encapsulated Phosphor Particles and Its Application of Temperature-velocity Measurement in Water [C]. KSME Annual Meeting2022, International Sessio, Jeju, Korea, 2022. (邀请报告) [2] Cai T†, Han J, Kim KC, et al. Adaptive Window Technique For Lifetime-Based Temperature And Velocity Simultaneous Measurement Using Thermographic Particle Tracking Velocimetry With A Single Camera. The 13th Pacific Symposium on Flow Visualization and Image Processing, Shinjuku, Japan, 2022. [3] Cai T†, Han J, Kim KC, et al. Adaptive Window Technique For Lifetime-Based Temperature And Velocity Simultaneous Measurement Using Thermographic Particle Tracking Velocimetry With A Single Camera. 2nd International Conference on Phosphor Thermometry, Magdeburg, Germany, 2022. [4] Cai T†, Kim M, Chung W, et al. Development of phosphorescence-based in-situ temperature and strain measurement technology for SOFC cell monitoring [C]. 6th Asian SOFC Symposium and Exhibition, Jeju, Korea, 2021. [5] Khodsiani M., Abram C, Cai T et al. Temperature measurements on the ash layer surface of reacting large-diameter coke particles [C]. 30. Deutscher Flammentag. Hannover-Garbsen, Germany, 2021 [6] Cai T†, Lee, T, Kim K, et al. Simultaneous Strain and Temperature Field Measurement Technique based on Digital Image Correlation and Thermographic Phosphor Thermometry [C]. 25th International Conference of Theoretical Applied and Experimental Mechanics, Milano, Italy, 2021. [7] Cai T, Khodsiani M, Hallak B, et al. Phosphor thermometry at the surface of single reacting large-diameter spherical coke particles to characterise combustion for packed bed furnaces[C]. 38th International Symposium on Combustion, Adelaide, Australia, 2021 [8] Cai T†, Yan Y†, Kim K, et al. Phosphorescence-based Flexible Optical Temperature Sensing Skin: Capable of Extreme Environments [C].2nd International Conference on Phosphor Thermometry, Magdeburg, Germany, 2020. [9] Cai T, Peng D, Yang L X, et al. Effect of oxygen on phosphorescence for different lanthanide ions Ln3+ doped yttria-stabilized zirconia [C].1st International Conference on Phosphor Thermometry, Glasgow, UK,2018. [10] Li Y Z, Cai T, Peng D, et al. Development of a dual-component phosphor system for simultaneous pressure and temperature measurements [C].1st International Conference on Phosphor Thermometry, Glasgow, UK,2018. [11] Cai T, Kim D, Kim M, et al. Assessment of Various Lifetime Based Post-processing Methods on Thermographic Phosphor Thermometry[C]. KSV, 2016, 04: 46-50. (Best Paper Award)

学术兼职

担任Advanced Materials,Applied Physics Letters,Optics and Lasers in Engineering,Measurement Science and Technology,Materials Research Express,Journal of Visualization,Engineering Research Express,Methods and Applications in Fluorescence,Review of Scientific Instruments,Sensors,Nanotechnology,Materials 等SCI期刊审稿人。 第19届国际流动显示(ISFV)会议组委会委员。 第6届国际流动-结构-噪声作用与控制(FSSIC)会议组委会委员。

推荐链接
down
wechat
bug