近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
2022年
28. Marques Ribeiro, H. H., Yeh, C.-A. Zhang, K. & Taira, K. (2022) Wing sweep effects on laminar separated flows. Journal of Fluid Mechanics, accpeted.
27. Zhang, K*. & Haque, N. (2022) Wake interactions between two side-by-side circular cylinders with different sizes. Physical Review Fluids, 7, 064703.
26. Burtsev, A., He, W., Hayostek, S., Zhang, K., Theofilis, V., Taira, K. & Amitay, M. (2022) Linear modal instabilities around post-stall swept finite aspect ratio wings at low Reynolds numbers. Journal of Fluid Mechanics, 944, A6.
25. Zhang, K.*, Taira, K. (2022) Laminar vortex dynamics around forward-swept wings. Physical Review Fluids, 7, 024704.
24. Zhang, K.*, Shah, B. and Bilgen, O. (2022) Low-Reynolds-number aerodynamic characteristics of airfoils with piezocomposite trailing control surfaces. AIAA Journal, 1-6.
23. Kuang, L., Su, J., Chen, Y., Han, Z., Zhou, D., Zhang, K., Zhao, Y. and Bao, Y. (2022). Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system. Energy, 239(B), 15, 122196.
22. Morimoto, M., Fukami, K., Zhang, K. and Fukagata, K. (2022). Toward practical uses of neural networks for fluid flow estimation. Neural Computing and Applications, 34, 3647–3669.
2021年
21. Ping, H., Zhu, H., Zhang, K., Zhou, D., Bao, Y. and Han, Z. (2021). Vortex-induced vibrations of two rigidly coupled circular cylinders of unequal diameters at low Reynolds number. Physics of Fluids, 33, 103603.
20. Fukami, K., Murata, T., Zhang, K. and Fukagata, K. (2021). Sparse identification of nonlinear dynamics with low-dimensionalized flow representations. Journal of Fluid Mechanics, 926, A10.
19. Morimoto, M., Fukami, K., Zhang, K., Nair, A. G. and Fukagata, K. (2021). Convolutional neural networks for fluid flow analysis: toward effective metamodeling and low-dimensionalization. Theoretical and Computational Fluid Dynamics, 35, 633–658.
18. Ping, H., Zhu, H., Zhang, K., Zhou, D., Bao, Y., Xu, Y. and Han, Z. (2021). Dynamic mode decomposition based analysis of flow past a transversely oscillating cylinder. Physics of Fluids, 33, 033604.
17. Zhang, Z., Tu, J., Zhang, K., Yang, H., Han, Z., Zhou, D., Xu, J. and Zhang, M. (2021). Vortex characteristics and flow-induced forces of the wavy cylinder at a subcritical Reynolds number. Ocean Engineering, 222, 108593.
16. Chen, Y., Dong, Z., Wang, Y., Su, J., Zhou, D., Zhang, K., Zhao, Y., Bao, Y. and Han, Z. (2021). Short-term wind speed predicting framework based on EEMD-GA-LSTM method under large scaled wind history. Energy Conversion and Management, 227, 113559.
2020年
15. Ping, H., Zhu, H., Zhang, K., Wang, R., Zhou, D., Bao, Y. and Han, Z. (2020). Wake dynamics behind a rotary oscillating cylinder analyzed with proper orthogonal decomposition. Ocean Engineering, 218, 108185.
14. Zhang, K., Hayostek, S., Amitay, M., Burtsev, A., Theofilis, V. and Taira, K. (2020). Laminar separated flows over finite-aspect-ratio swept wings. Journal of Fluid Mechanics, 905, R1.
13. Zhang, K., Zhou, D., Katsuchi, H., Yamada, H., Han, Z. and Bao, Y. (2020). Bistable states in the wake of a wavy cylinder. Physics of Fluids, 32(7), 074112.
12. Zhang, K., Hayostek, S., Amitay, M., He, W., Theofilis, V. and Taira, K. (2020). On the formation of three-dimensional separated flows over wings under tip effects. Journal of Fluid Mechanics, 895, A9.
2018年
11. Zhang, K., Katsuchi, H., Zhou, D., Yamada, H., Bao, Y., Han, Z. and Zhu, H. (2018). Numerical study of flow past a transversely oscillating wavy cylinder at $Re$= 5000. Ocean Engineering, 169, 539-550.
10. Zhang, K., Katsuchi, H., Zhou, D., Yamada, H. and Lu, J. (2018). Large eddy simulation of flow over inclined wavy cylinders. Journal of Fluids and Structures, 80, 179-198.
9. Ma, N., Lei, H., Han, Z., Zhou, D., Bao, Y., Zhang, K., Zhou, L. and Chen, C. (2018). Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio. Energy, 150, 236-252.
8. He, T., Zhang, H. and Zhang, K. (2018). A smoothed finite element approach for computational fluid dynamics: applications to incompressible flows and fluid–structure interaction. Computational Mechanics, 62(5), 1037-1057.
2017年
7. Ma, J., Zhou, D., Han, Z., Zhang, K., Nguyen, J., Lu, J. and Bao, Y. (2017). Numerical simulation of fluctuating wind effects on an offshore deck structure. Shock and Vibration, 2017.
6. He, T., Zhang, K. and Wang, T. (2017). AC-CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction using stabilized second-order pressure scheme. Communications in Computational Physics, 21(5), 1449-1474.
5. Zhang, K., Katsuchi, H., Zhou, D., Yamada, H., Zhang, T. and Han, Z. (2017). Numerical simulation of vortex induced vibrations of a flexibly mounted wavy cylinder at subcritical Reynolds number. Ocean Engineering, 133, 170-181.
4. He, T. and Zhang, K. (2017). An overview of the combined interface boundary condition method for fluid–structure interaction. Archives of Computational Methods in Engineering, 24(4), 891-934.
2016年之前
3. Zhang, K., Katsuchi, H., Zhou, D., Yamada, H. and Han, Z. (2016). Numerical study on the effect of shape modification to the flow around circular cylinders. Journal of Wind Engineering and Industrial Aerodynamics, 152, 23-40.
2. He, T. and Zhang, K. (2015). Combined interface boundary condition method for fluid–structure interaction: Some improvements and extensions. Ocean Engineering, 109, 243-255.
1. Tu, J., Zhou, D., Bao, Y., Fang, C., Zhang, K., Li, C., and Han, Z. (2014). Flow-induced vibration on a circular cylinder in planar shear flow. Computers and Fluids, 105, 138-154.