近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Fang Han, Xue Hongxiang*, Tang Wenyong. Blast wave propagation characteristics in FPSO: Effect of cubical obstacles. Ocean Engineering, 2022, 250: 111022.
Fang Han, Xue Hongxiang*, Tang Wenyong. A new approach for quantitative risk assessment of gas explosions on FPSO. Ocean Engineering, 2022, 250: 112006.
Yuan Yuchao, Zhuang Chenyi, Tang Wenyong, Xue Hongxiang*. Numerical investigation of Vortex-Induced Vibration response for a full-scale riser with staggered buoyancy modules. Ocean Engineering, 2022, 252, 111241.
Zhang Haoran, Tang Wenyong, Yuan Yuchao, Xue Hongxiang, Qin Hao. The three-dimensional green-water event study on a fixed simplified wall-sided ship under freak waves. Ocean Engineering, 2022, 251: 111096.
Guo Li, Yuan Yuchao, Tang Wenyong, Xue Hongxiang. A numerical investigation on quasi-static configuration and nonlinear dynamic response characteristics of marine towing cable. Ocean Engineering, 2021, 240: 110007.
Duan Zhongdi, Sun Haoran, Cheng Cheng, Tang Wenyong, Xue Hongxiang. A moving-boundary based dynamic model for predicting the transient free convection and thermal stratification in liquefied gas storage tank. International Journal of Thermal Sciences, 2021, 160: 106690.
Zhang Haoran, Yuan Yuchao, Tang Wenyong, Xue Hongxiang, Jun Liu, Hao Qin. Numerical analysis on three-dimensional green water events induced by freak wave. Ships and Offshore Structures, 2021, 16(S1): 33-43.
Duan Zhongdi, Xue Hongxiang, Gong Xueru, Tang Wenyong. A thermal non-equilibrium model for predicting LNG boil-off in storage tanks incorporating the natural convection effect. Energy, 2021, 233: 121162.
Yuan Yuchao, Zheng Mengtian, Xue Hongxiang*, Tang Wenyong. Nonlinear riser-seabed interaction response at touchdown zone of a steel catenary riser in consideration of vortex-induced vibration. Ocean Engineering, 2021, 227: 108891.
Liu Qingsheng, Xue Hongxiang*, Tang Wenyong. Behavior of unbonded flexible riser with composite armor layers under coupling loads. Ocean Engineering, 2021, 239: 109907.
Yuan Yuchao, Xue Hongxiang*, Tang Wenyong. A Numerical Investigation of vortex-induced vibration response and fatigue damage for flexible cylinders under combined uniform and oscillatory flow. China Ocean Engineering, 2020, 34(4): 488-499.
Yuan Yuchao, Xue Hongxiang*, Tang Wenyong. Nonlinear dynamic response analysis of marine risers under non-uniform combined unsteady flows. Ocean Engineering, 2020, 213: 107687.
Liu Qingsheng, Xue Hongxiang*, Tang Wenyong, Yuan Yuchao. Theoretical and numerical methods to predict the behavior of unbonded flexible riser with composite armour layers subjected to axial tension. Ocean Engineering, 2020, 199: 107038.
Xue Hongxiang*, Yuan Yuchao, Tang Wenyong. Numerical investigation on vortex-induced vibration response characteristics for flexible risers under sheared-oscillatory flows. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(2): 923-938.
Yuan Yuchao, Xue Hongxiang*, Tang Wenyong. VIV response characteristics of a top-tensioned riser with bi-frequency parametric excitation. Ocean Engineering, 2019, 190: 106490.
Liu Qing-sheng, Xue Hong-xiang*, Liu Xiao-yuan, Tang Wen-yong. Failure characteristics analysis of tensile armour layer of unbonded flexible riser under axial compression. Ships and Offshore Structures, 2019, 14(S1): 187-198.
Yuan Yu-chao, Xue Hong-xiang*, Tang Wen-yong. Added mass variation effect on vortex-induced vibration for flexible risers based on force-decomposition model. Ships and Offshore Structures, 2018, 13(S1): 1-12.
Yuan Yuchao, Xue Hongxiang*, Tang Wenyong. Numerical analysis of Vortex-Induced Vibration for flexible risers under steady and oscillatory flows. Ocean Engineering, 2018, 148: 548–562.
Yuan Yuchao, Xue Hongxiang*, Tang Wenyong. A numerical investigation of Vortex-Induced Vibration response characteristics for long flexible cylinders with time-varying axial tension. Journal of Fluids and Structures, 2018, 77: 36-57.
Xue Hong-xiang, Hu Zhe, Tang Wen-yong, Zhang Xiao-ying, Wang Kun-peng. Theoretical approximation of focusing-wave induced load upon a large-scale vertical cylinder. China Ocean Engineering, 2017, 31(5): 598-606.
Yuan Yuchao, Xue Hongxiang*, Tang Wenyong. An improved time domain coupled model of Cross-Flow and In-Line Vortex-Induced Vibration for flexible risers. Ocean Engineering, 2017, 136: 117-128.
Liu Dongxi, Tang Wenyong, Wang Jin, Xue Hongxiang, Wang Kunpeng. Hybrid RANS/LES simulation of sloshing flow in a rectangular tank with and without baffles. Ships and Offshore Structures, 2017, 12(8): 1005-1015.
Wang Kunpeng, Ji Chunyan, Xue Hongxiang, Tang Wenyong. Frequency domain approach for the coupled analysis of floating wind turbine system. Ships and Offshore Structures, 2017, 12(6): 767-774.
Hu Zhe, Tang Wenyong, Xue Hongxiang, Zhang Xiaoying, Wang Kunpeng. Numerical study of rogue wave overtopping with a fully-coupled fluid-structure interaction model. Ocean Engineering, 2017, 137: 48-58.
Qin Hao, Tang Wenyong, Xue Hongxiang, Hu Zhe. Numerical study of nonlinear freak wave impact underneath a fixed horizontal deck in 2-D space. Applied Ocean Research, 2017, 64: 155-168.
Qin Hao, Tang Wenyong, Xue Hongxiang, Hu Zhe, Guo Jinting. Numerical study of wave impact on the deck-house caused by freak waves. Ocean Engineering, 2017, 133: 151–169.
Liu Dongxi, Tang Wenyong, Wang Jin, Xue Hongxiang. Modelling of liquid sloshing using CLSVOF method and very large eddy simulation. Ocean Engineering, 2017, 129: 160-176.
Wang Kunpeng, Ji Chunyan, Xue Hongxiang, Tang Wenyong. Fatigue damage study of helical wires in catenary unbonded flexible riser near touchdown point. Journal of Offshore Mechanics and Arctic Engineering - Transactions of the ASME, 2017, 139(5): 051701.
Qin Hao, Tang Wenyong, Xue Hongxiang, Hu Zhe. Dynamic response of a horizontal plate dropping onto nonlinear freak waves using a fluid-structure interaction method. Journal of Fluids and Structures, 2017, 74: 291-305.
Ren Shao-fei, Xue Hong-xiang*, Tang Wen-yong. Analytical and numerical models to predict the behavior of unbonded flexible risers under torsion. China Ocean Engineering, 2016, 30(2): 243-256.
Wang Kunpeng, Ji Chunyan, Xue Hongxiang, Tang Wenyong. Fatigue damage characteristics of a semisubmersible-type floating offshore wind turbine at tower base. Journal of Renewable and Sustainable Energy, 2016, 8(5): 053307.
Liu Dongxi, Tang Wenyong, Wang Jin, Xue Hongxiang, Wang Kunpeng. Comparison of laminar model, RANS, LES and VLES for simulation of liquid sloshing. Applied Ocean Research, 2016, 59: 638-649.
Hu Zhe, Tang Wen-yong, Xue Hong-xiang. Numerical wave tank based on a conserved wave-absorbing method. China Ocean Engineering, 2016, 30(1): 137-148.
Hu Zhe, Tang Wenyong, Xue Hongxiang, Zhang Xiaoying. A SIMPLE-based monolithic implicit method for strong-coupled fluid-structure interaction problems with free surfaces. Computer Methods in Applied Mechanics and Engineering, 2016, 299: 90-115.
Hu Zhe, Xue Hongxiang*, Tang Wenyong, Zhang Xiaoying. Numerical study of nonlinear Peregrine breather under finite water depth. Ocean Engineering, 2015, 108: 70-80.
Xue Hongxiang*, Wang Kunpeng, Tang Wenyong. A practical approach to predicting cross-flow and in-line VIV response for deepwater risers. Applied Ocean Research, 2015, 52: 92-101.
Hu Zhe, Xue Hongxiang*, Tang Wenyong, Zhang Xiaoying. A combined wave-dam-breaking model for rogue wave overtopping. Ocean Engineering, 2015, 104: 77-88.
Hu Zhe, Tang Wenyong, Xue Hongxiang, Zhang Xiaoying, Guo Jinting. Numerical simulations using conserved wave absorption applied to Navier-Stokes equation model. Coastal Engineering, 2015, 99: 15-25.
Wang Kunpeng, Tang Wenyong, Xue Hongxiang. Time domain approach for coupled cross-flow and in-line VIV induced fatigue damage of steel catenary riser at touchdown zone. Marine Structures, 2015, 41: 267-287.
Hu Zhe, Tang Wenyong, Xue Hongxiang, Zhang Xiaoying. Numerical study of rogue waves as nonlinear Schrödinger breather solutions under finite water depth. Wave Motion, 2015, 52: 81-90.
Xue Hongxiang*, Tang Wenyong, Qu Xue. Prediction and analysis of fatigue damage due to cross-flow and in-line VIV for marine risers in non-uniform current. Ocean Engineering, 2014, 83: 52-62.
Wang Kun-peng, Tang Wen-yong, Xue Hong-xiang*. Cross-flow VIV induced fatigue damage of deepwater steel catenary riser at touch-down point. China Ocean Engineering, 2014, 28(1): 81-93.
Wang Kunpeng, Xue Hongxiang*, Tang Wenyong. Time domain prediction approach for cross-flow VIV induced fatigue damage of steel catenary riser near touchdown point. Applied Ocean Research, 2013, 43: 166-174.
Wang Kunpeng, Xue Hongxiang*, Tang Wenyong, Guo Jinting. Fatigue analysis of steel catenary riser at the touch-down point based on linear hysteretic riser-soil interaction model. Ocean Engineering, 2013, 68: 102-111.