近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] X.D. Zhou, L.K. Yin, L.J. Xu, F.Y. Liang*. Non-periodicity of blood flow and its influence on wall shear stress in the carotid artery bifurcation: an in vivo measurement-based computational study. Journal of Biomechanics, 2020, 101:109617.
[2] X.Y. Ge, Y.J. Liu, Z.F. Yin, S.X. Tu, Y.Q. Fan, Y. Vassilevski, S. Simakov, F.Y. Liang*. Comparison of instantaneous wave-free ratio (iFR) and fractional flow reserve (FFR) with respect to their sensitivities to cardiovascular factors: a computational model-based study. Journal of Interventional Cardiology, 2020 (In press).
[3] X.D. Zhou, F.Y. Liang*. Numerical study on low-density lipoprotein transport and deposition in the carotid artery and associated factors. Journal of Medical Biomechanics, 2020. (In Chinese, In press)
[4] Xu L, Wang H, Chen Y, Dai Y, Lin B, Liang F, Wan J, Yang Y, Zhao B. Morphological and hemodynamic factors associated with ruptured middle cerebral artery mirror aneurysms: a retrospective study. World Neurosurgery, 2020, DOI: 10.1016/j.wneu.2020.01.083(In press).
[5] Tu S, Westra J, Adjedj J, Ding D, Liang F, Xu B, Holm NR, Reiber JHC, Wijns W. Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation. European Heart Journal. 2019. doi: 10.1093/eurheartj/ehz918 (In press).
[6] X.Y. Ge, Y.J. Liu, S.X. Tu, S. Simakov, Y. Vassilevski, F.Y. Liang*. Model-based analysis of the sensitivities and diagnostic implications of FFR and CFR under various pathological conditions. International Journal for Numerical Methods in Biomedical Engineering, 2019 e3257.
[7] Carson JM, Pant S, Roobottom C, Alcock R, Javier Blanco P, Alberto Bulant C, Vassilevski Y, Simakov S, Gamilov T, Pryamonosov R, Liang F, Ge X, Liu Y, Nithiarasu P. Non-invasive coronary CT angiography-derived fractional flow reserve: A benchmark study comparing the diagnostic performance of four different computational methodologies. International Journal for Numerical Methods in Biomedical Engineering, 2019, 35(10):e3235.
[8] L.J Xu, B. Zhao, X.S. Liu, F.Y. Liang*. Computational methods applied to analyze the hemodynamic effects of flow-diverter devices in the treatment of cerebral aneurysms: current status and future directions. Medicine in Novel Technology and Devices, 2019, 3:100018
[9] X.Y. Li, X.S. Liu, X. Li, L.J. Xu, X. Chen, F.Y. Liang*. Tortuosity of the superficial femoral artery and its influence on blood flow patterns and risk of atherosclerosis. Biomechanics and Modeling in Mechanobiology, 2019, 18:883-896.
[10] L.J. Xu, L.K. Yin, Y.J. Liu, F.Y. Liang*. A computational study on the influence of aortic valve disease on hemodynamics in dilated aorta. Mathematical Biosciences and Engineering, 2019, 17(1): 606-626.
[11] Z.Q. Zhang, L.J. Xu, R. Liu, X.S. Liu, B. Zhao, F.Y. Liang*. Importance of incorporating systemic cerebroarterial hemodynamics into computational modeling of blood flow in intracranial aneurysm. Journal of Hydrodynamics, 2019. https://doi.org/10.1007/s42241-019-0038-9 (In press).
[12] J. Li, Z.F. Yin, F.Y. Liang*. Transient Hemodynamic Characteristics upon Balloon Deflation in Coronary Interventional Operation: In Vitro Experiment and Numerical Simulation. Journal of Medical Biomechanics, 2019, 34(5): 473-480 (In Chinese).
[13] Dobroserdova T., Liang F., Panasenko G., Vassilevski, Y. Multiscale models of blood flow in the compliant aortic bifurcation. Applied Mathematics Letters, 2019, 93:98-104.
[14] L.J. Xu, F.Y. Liang*, L.X. Gu, H. Liu*. Flow instability detected in ruptured versus unruptured cerebral aneurysms at the internal carotid artery. Journal of Biomechanics, 2018, 72: 187-199.
[15] L.J. Xu, F.Y. Liang*, B. Zhao, H. Liu. Influence of aging-induced flow waveform variation on hemodynamics in aneurysms present at the internal carotid artery: A computational model-based study. Computers in Biology and Medicine, 2018, 101: 51-60.
[16] X.Y. Ge, Z.F. Yin, Y.Q. Fan, Y. Vassilevski, F.Y. Liang*. A multi-scale model of the coronary circulation applied to investigate transmural myocardial flow. International Journal for Numerical Methods in Biomedical Engineering, 2018, 34: e3123.
[17] T.Q. Wang, F.Y. Liang*, Z.Q. Zhou, X.L. Qi. Global sensitivity analysis of hepatic venous pressure gradient (HVPG) measurement with a stochastic computational model of the hepatic circulation. Computers in Biology and Medicine, 2018, 97: 124-136.
[18] F.Y. Liang*, D.B. Guan, J. Alastruey. Determinant factors for arterial hemodynamics in hypertension: theoretical insights from a computational model-based study. Journal of Biomechanical Engineering, 2018, 140(3): 031006.
[19] X.J. Zhang, Y.P. Zhang, Z.F. Yin, K.R. Qin, F.Y. Liang*. Theoretical method and clinical experiments for estimating arterial stiffness based on upper-arm cuff oscillometric wave. China Medical Devices, 2018, 33(4): 22-28. (In Chinese)
[20] T.Q. Wang, F.Y. Liang*, Z.Q. Zhou, L. Shi. A computational model of the hepatic circulation applied to analyze the sensitivity of hepatic venous pressure gradient (HVPG) in liver cirrhosis. Journal of Biomechanics, 2017, 65: 23-31.
[21] F.Y. Liang*, X.S. Liu, R. Yamaguchi, H. Liu. Sensitivity of flow patterns in aneurysms on the anterior communicating artery to anatomic variations of the cerebral arterial network. Journal of Biomechanics, 2016, 49: 3731-3740.
[22] D.B. Guan, F.Y. Liang*, P. Gremaud. Comparison of the Windkessel model and structured-tree model applied to prescribe outflow boundary conditions for a one-dimensional arterial tree model. Journal of Biomechanics, 2016, 49(9): 1583-1592.
[23] Z.P. Deng, F.Y. Liang*. Numerical analysis of stress distribution in the upper arm tissues under an inflatable cuff: implications for noninvasive blood pressure measurement. Acta Mechanica Sinica, 2016, 32(5): 959-969.
[24] F.Y. Liang*, Z.F. Yin*, Y.Q. Fan, K. Chen, C.Q. Wang. In vivo validation of an oscillometric method for estimating central aortic pressure. International Journal of Cardiology, 2015, 199: 439-441.
[25] F.Y. Liang*, M. Oshima, H.X. Huang, H. Liu, S. Takagi. Numerical study of cerebroarterial hemodynamic changes following carotid artery operation: a comparison between multiscale modeling and stand-alone three-dimensional modeling. Journal of Biomechanical Engineering, 2015, 137(10): 101011.
[26] F.Y. Liang*, H. Senzaki, C. Kurishima, K. Sughimoto, R. Inuzuka, H. Liu. Hemodynamic performance of the Fontan circulation compared with a normal biventricular circulation: a computational model study. American Journal of Physiology-Heart and Circulatory Physiology, 2014, 307(7): H1056-H1072.
[27] F.Y. Liang*, K. Sughimoto, K. Matsuo, H. Liu, S. Takagi. Patient-specific assessment of cardiovascular function by combination of clinical data and computational model with applications to patients undergoing Fontan operation. International Journal for Numerical Methods in Biomedical Engineering, 2014, 30(10):1000-1018.
[28] F.Y. Liang*. Numerical validation of a suprasystolic brachial cuff-based method for estimating aortic pressure. Bio-medical Materials and Engineering, 2014, 24(1): 1053-1062.
[29] Z.P. Deng,C.G. Zhang,P. Yu,J. Shao,F.Y. Liang*. Estimation of left ventricular stroke volume based on pressure waves measured at the wrist: a method aimed at home-based use. Bio-medical Materials and Engineering, 2014, 24(6): 2909-2918.
[30] F.Y. Liang*, H. Senzaki, Z.F. Yin, Y.Q. Fan, K. Sughimoto, H. Liu. Transient hemodynamic changes upon changing a BCPA into a TCPC in staged Fontan operation: a computational model study. The Scientific World Journal, 2013, 2013: 486815.
[31] K. Sughimoto*, F.Y. Liang*, Y. Takahara, K. Mogi, K. Yamazaki, S. Takagi, H. Liu. Assessment of cardiovascular function by combining clinical data with a computational model of the cardiovascular system. Journal of Thoracic and Cardiovascular Surgery, 2013, 145(5):1367-72.
[32] Y. Li, Z.F. Yin, F.Y. Liang*. Error analysis on the assessment of cardiovascular function based on integration of clinical data and cardiovascular model. Chinese Journal of Biomedical Engineering, 2016(1): 47-54. (In Chinese)
[33] X. Han, X.S. Liu, F.Y. Liang*. The influence of outflow boundary conditions on blood flow patterns in an AcoA aneurysm. Journal of Hydrodynamics (Series A), 2015, 30(6): 692-700. (In Chinese)
[34] F.Y. Liang*, S. Takagi, R. Himeno, H. Liu. A computational model of the cardiovascular system coupled with an upper-arm oscillometric cuff and its application to studying the suprasystolic cuff oscillation wave, concerning its value in assessing arterial stiffness. Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16(2):141-157.
[35] F.Y. Liang*, S. Takagi, H. Liu. The influences of cardiovascular properties on suprasystolic brachial cuff wave studied by a simple arterial-tree model. Journal of Mechanics in Medicine and Biology, 2012, 12(3): 1-25.
[36] F.Y. Liang*, H. Liu, S. Takagi. The effects of brachial arterial stiffening on the accuracy of oscillometric blood pressure measurement: A computational model study. Journal of Biomechanical Science and Engineering, 2012, 7(1): 15-30.
[37] F.Y. Liang*, K. Fukasaku, S. Takagi, H. Liu. A computational model study of the influence of the anatomy of the circle of Willis on cerebral hyperperfusion following carotid artery surgery. BioMedical Engineering Online, 2011, 10:84.
[38] F.Y. Liang, S. Takagi*, R. Himeno, H. Liu. Multi-scale modeling of the human cardiovascular system with applications to aortic valvular and arterial stenoses. Medical & Biological Engineering & Computing, 2009, 47(7): 743-755.
[39] F.Y. Liang, S. Takagi, R. Himeno, H. Liu*. Biomechanical characterization of ventricular-arterial coupling during aging: a multi-scale model study, Journal of Biomechanics, 2009, 42(6): 692-704.
[40] F.Y. Liang, H. Taniguchi, H. Liu*. A multi-scale computational method applied to the quantitative evaluation of the left ventricular function. Computers in Biology and Medicine, 2007, 37(5): 700-715.
[41] F.Y. Liang, R. Yamaguchi, H. Liu*. Fluid dynamics in normal and stenosed human renal arteries: An experimental and computational study. Journal of Biomechanical Science and Engineering, 2006, 1: 171-182.
[42] F.Y. Liang, H. Liu*. Simulation of hemodynamic responses to the Valsalva maneuver: An integrative computational model of the cardiovascular system and the autonomic nervous system. Journal of Physiological Sciences, 2006, 56(1): 45-65.
[43] F.Y. Liang*, H. Liu. A closed-loop lumped parameter computational model for human cardiovascular system. JSME International Journal (C), 2005, 48(4): 484-493.