近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Liu, T., Zhang, X., Li, K., Yao, Q., Zhong, D., Deng, Q., Lu, Y. (2023) Large-scale genome editing in plants: approaches, applications, and future perspectives, Current Opinion in Biotechnology, 79:102875
Shen, R., Yao, Q., Zhong, D., Zhang, X., Li, X., Cao, X., Dong, C., Tian, Y., Zhu, J-K and Lu, Y.* (2023) Targeted insertion of regulatory elements enables translational enhancement in rice. Frontiers in Plant Science, 14:1134209
Tian, Y., Zhong, D., Li, X., Shen, R., Han, H., Dai, Y., Yao, Q., Zhang, X., Deng, Q., Cao, X., Zhu, J. K., and Lu, Y.* (2022). High-throughput genome editing in rice with a virus-based surrogate system. Journal of integrative plant biology, 10.1111/jipb.13381
Tian, Y., Shen, R., Li, Z., Yao, Q., Zhang, X., Zhong, D., Tan, X., Song, M., Han, H., Zhu, J. K., and Lu, Y.* (2022). Efficient C-to-G editing in rice using an optimized base editor. Plant biotechnology journal, 20(7):1238–1240.
Lu, Y.*, Ronald, P.C., Han, B., Li, J. and Zhu, J.K. (2020). Rice Protein Tagging Project: A Call for International Collaborations on Genome-wide In-Locus Tagging of Rice Proteins. Molecular Plant 13(12):1663-1665.
Lu, Y.#, Tian, Y.#, Shen, R., Yao, Q., Wang, M., Chen, M., Dong, J., Zhang, T., Li, F., Lei, M. and Zhu, J.K.* (2020). Targeted, efficient sequence insertion and replacement in rice. Nature Biotechnology 38(12):1402-1407.
Lu, Y.*#, Tian, Y.#, Shen, R., Yao, Q., Zhong, D., Zhang, X., and Zhu, J.K.* (2021). Precise genome modification in tomato using an improved prime editing system. Plant biotechnology journal 19(3):415-417.
Lu, Y., Ye, X., Guo, R., Huang, J., Wang, W., Tang, J., Tan, L., Zhu, J.K., Chu, C., and Qian, Y.* (2017). Genome-wide Targeted Mutagenesis in Rice Using the CRISPR/Cas9 System. Molecular Plant 10:1242-1245.
Lu, Y., and Zhu, J.K.* (2017). Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Molecular Plant 10:523-525.
Wang, M.#, Lu, Y.#, Botella, J.R., Mao, Y., Hua, K., and Zhu, J.K.* (2017). Gene Targeting by Homology-Directed Repair in Rice Using a Geminivirus-Based CRISPR/Cas9 System. Molecular Plant 10:1007-1010.
Xiong, J.#, Lu, Y.#, Feng, J., Yuan, D., Tian, M., Chang, Y., Fu, C., Wang, G., Zeng, H., and Miao, W.* (2013). Tetrahymena functional genomics database (TetraFGD): an integrated resource for Tetrahymena functional genomics. Database (Oxford), bat008.
Lu, Y., Chen, X., Wu, Y., Wang, Y., He, Y., and Wu, Y.* (2013). Directly transforming PCR-amplified DNA fragments into plant cells is a versatile system that facilitates the transient expression assay. PLoS One 8, e57171.
Xiong, J.#, Lu, X.#, Lu, Y.#, Zeng, H., Yuan, D., Feng, L., Chang, Y., Bowen, J., Gorovsky, M., Fu, C., et al. (2011). Tetrahymena Gene Expression Database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena. Science China Life Sciences 54, 65-67.
Srivastava, AK., Lu, Y., Zinta, G., Lang, Z., and Zhu, J.K.* (2018). UTR-Dependent Control of Gene Expression in Plants. Trends in Plant Science 23:248-259.
Zhan, X., Lu, Y., Zhu, J.K., and Botella, J.R. (2021). Genome editing for plant research and crop improvement. Journal of integrative plant biology 63, 3-33.
Wang, M., Mao, Y., Lu, Y., Tao, X., and Zhu, J.K.* (2017). Multiplex Gene Editing in Rice Using the CRISPR-Cpf1 System. Molecular Plant 10:1011-1013.
Wang M, Wang Z, Mao Y, Lu Y, Yang R, Tao X, Zhu JK*. (2019). Optimizing base editors for improved efficiency and expanded editing scope in rice. Plant biotechnology journal 17(9):1697-1699.
Liu, H.J., Jian, L., Xu, J., Zhang, Q., Zhang, M., Jin, M., Peng, Y., Yan, J., Han, B., Liu, J., Lu, Y. et al. (2020). High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize. The Plant Cell 32:1397-1413.
Wang, M., Mao, Y., Lu, Y., Wang, Z., Tao, X., and Zhu, J.K.* (2018). Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems. Journal of Integrative Plant Biology 60:626-631.
Wang, Y., Li, L., Ye, T., Lu, Y., Chen, X., and Wu, Y.* (2013). The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis. Journal of Experimental Botany 64, 675-684.