研究领域
The research in the aggregation and kinetics group aims at exploring aggregation phenomena under reactive conditions at the molecular level. The atmospheric oxidation of certain organic substances and the oxidation of hydrocarbon fuels in diesel engines are well known processes leading to particle formation. In the atmosphere such aggregates containing a large fraction of organic matter are called secondary organic aerosol. Soot particles are responsible for the black colour of exhaust gas from diesel fuel combustion. Aerosols influence visibility, climate, and human health and their chemistry is an active field of research with many open issues. An example is the climate effect: It is very large but the mechanisms behind are only poorly characterized. In this context an important question is the exact structure of the smallest aggregates at the beginning of aggregation processes. Such small aggregates are called clusters and we examine their structure with the help of reactive sodium atoms. When attached to an aggregate and irradiated by ultraviolet or visible light the weakly bound sodium 3s electron is ejected and the cluster softly ionized without fragmentation. Additional irradiation with an infrared laser provides the infrared spectrum of the aggregate. The infrared spectrum is our key for unravelling the cluster structure (with a little help of quantum chemical calculations). When aggregation occurs under reactive conditions a zoo of stable and unstable species is formed and it is very difficult to identify those, which initiate the formation of aggregates. Here our trick is first to study the kinetics of the gas chemistry, which we can do well and second to analyze the amount of aerosol being formed, which we also can do well. The links we find between gas phase kinetics and aerosol formation are our key for unravelling the aggregation mechanism. Moreover we continuously develop complex reaction mechanisms for model fuels being used in industrial combustion research for optimizing engine performance and minimizing pollutant formation.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
C. C. Pradzynski, C. W. Dierking, F. Zurheide, R. M. Forck, U. Buck, T. Zeuch und S. S. Xantheas, Infrared detection of (H2O)20 isomers of exceptional stability: a drop-like and a face-sharing pentagonal prism cluster, Phys. Chem. Chem. Phys., 2014, 16, 26691.
U. Buck, C. C. Pradzynski, T. Zeuch, J. M. Dieterich, B. Hartke, A size resolved investigation of large water clusters, Phys. Chem. Chem. Phys., 2014, 16, 6859.
L. Seidel, K. Hoyermann, F. Mauß, J. Nothdurft, T. Zeuch, Pressure Dependent Product Formation in the Photochemically Initiated Allyl + Allyl Reaction, Molecules, 2013, 18, 13608.
C. C. Pradzynski, R. M. Forck, T. Zeuch, P. Slavíček, U. Buck, A Fully Size-Resolved Perspective on the Crystallization of Water Clusters, Science, 2012, 337, 1529-1532.
R. M. Forck, I. Dauster, Y. Schieweck, T. Zeuch, U. Buck, M. Ončák, P. Slavíček, Communications: Observation of two classes of isomers of hydrated electrons in sodium-water clusters, J. Chem. Phys., 2010, 132, 221102.