个人简介
Work Experience
2017.7~present Professor, School of Systems Science, Beijing Normal University. Teaching "Artificial Intelligence" and "Data Driven Artificial Intelligence" for graduate students and "Thinking in complexity" and "Matlab?" for college students.
2012.7~2017.7 Associate Professor, School of Systems Science, Beijing Normal University. Teaching "Artificial Intelligence" for graduate students and "Thinking in complexity" and "Matlab?" for college students.
2008.6~2012.7 Assistant Professor, Department of Systems Science, School of Management, Beijing Normal University.
2006.4~2008.4 Post doctoral research in complex systems research center, Academy of Mathematics and Systems Science, China Academy of Sciences.
Visit Experience
2010.10~present Visited Santa Fe Institute for several times, Santa Fe, New Mexico, U.S.(Record of experience)
2014.12~2015.2 Visited Arizona State University, Tempe, U.S.
2011.9~2011.10 Visited Fribourg University, Fribourg, Switzerland.
2007.7~2007.8 Visited Center for Study Complex Systems, University of Michigan, U.S.
Projects
2016.12~2017.6 Project “Elementary School Textbook for UBTech Robots STEM”, supported by UBTech company, 1,000,000 RMB
2017.1~2020.12 Project: “Research on collective attention flows on the WWW”, supported by National Natural Science Foundation of China, the Grant No. is 61673070, 610,000 RMB
2015.9~2017.9 Project "The structure, evolution, and applications of open flow networks", Beijing Normal University Project
2014.1~2016.12 Project “Allometric Growth of Complex Networks” supported by Beijing Higher Education Young Elite Teacher Project (http://www.bjedu.gov.cn) under the Grant No.YETP0291, 150,000 RMB
2011.1~2013.12 Project "Research on Allometric Scaling of Weighted Food Webs" supported by National Natural Science Foundation of China, the Grant No. is 61004107, 210,000 RMB
Awards
2008 First-class award in Contest of Basic Skills of Teaching for Young Faculty, Beijing Normal University
2006 C Xu Guo Zhi post-doctoral fellowship in Institute of Systems Science
研究领域
(1)复杂系统自动建模
根据复杂系统可观测变量的时间序列自动构建复杂系统模型,通过图网络、因果推理、信息论、深度学习等技术自动地学习动力学、并进行行为预测、推断隐藏的网络结构、节点状态等未知信息,甚至自动发现具有因果特性的宏观变量,并辨识是否存在涌现现象。
(2) 复杂网络上的机器学习
机器学习为我们提供了新工具来处理并解决复杂网络中的推断,例如:复杂网络分类、网络补全、连边预测等。
(3)规模标度(Scaling)分析
在城市系统、生物系统、企业和网络中,通过在数据中发掘整体层面的标度律,这些规律可以表征复杂系统的宏观普遍模式,也可以为微观层面的机制提供一些洞察。
(4) 开放流网络
通过将复杂开放系统建模为有向加权网络,并在网络中添加两个特殊节点:源和汇,我们可以针对一类具有守恒特性的流结构进行建模,潜在应用包括:在线教育和学习系统中的注意力流分析,在线论坛、网站中的注意力流分析,国际贸易系统中的商品流分析和生态系统食物网中的能量流分析等。
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Tensor networks for unsupervised machine learning. Phys. Rev. E 107, L012103 – Published 31 January 2023
以复杂思维考察制度涌现。 外国经济与管理 2023 年 第 45 卷第 01 期, 页码:23 - 37
Neural Information Squeezer for Causal Emergence. Entropy 2023, 25(1), 26
Universal framework for reconstructing complex networks and node dynamics from discrete or continuous dynamics data. Phys. Rev. E 106, 034315 – Published 16 September 2022
Completing Networks by Learning Local Connection Patterns. arXiv:2204.11852v2 [cs.LG]
Solving nonequilibrium statistical mechanics by evolving autoregressive neural networks. arXiv:2208.08266 [cond-mat.stat-mech]
Scaling laws and a general theory for the growth of public companies. arXiv:2109.10379 [physics.soc-ph]
Neural Enhanced Dynamic Message Passing.AISTATS(2022). PMLR 151:10471-10482, 2022
Discovering latent node Information by graph attention network. Scientific Reports 11, 6967 (2021).
Ruiqi Li; Lei Dong; Jiang Zhang; Xinran Wang; Wen-xu Wang; Zengru Di; H.Eugene Stanley ; Simple spatial scaling rules behind complex cities, Nature Communications, 2017, 8: 0-1841 (期刊论文)
Lifei Wang; Rui Nie; Zeyang Yu; Ruyue Xin; Caihong Zheng; Zhang Zhang; Jiang Zhang; Jun Cai ; An interpretable deep-learning architecture of capsule networks for identifying cell-type gene expression programs from single-cell RNA-sequencing data, Nature Machine Intelligence, 2020, 2 : 0-693 - 703 (期刊论文)
Mengyuan Chen; Yan Zhang; Zhang Zhang; Lun Du; Shuo Wang; Jiang Zhang ; Inferring network structure with unobservable nodes from time series data, Chaos, 2022, 32 (013126) (期刊论文)
Shuo Wang; Yanran Li; Jiang Zhang; Qingye Meng; Lingwei Meng; Fei Gao ; PM2.5-GNN: A Domain Knowledge Enhanced Graph Neural Network For PM2.5 Forecasting, SIGSPATIAL '20: 28th International Conference on Advances in Geographic Information Systems, Seatle, USA, 2020-11-3至2020-11-6 (会议论文)
Zhang Zhang; Yi Zhao; Jing Liu; Shuo Wang; Ruyi Tao; Ruyue Xin; Jiang Zhang ; A general deep learning framework for network reconstruction and dynamics learning, Applied Network Science, 2019, 4(110): 0-110 (期刊论文)
学术兼职
集智俱乐部创始人,集智学园(北京)科技有限公司创始人,集智科学研究中心理事长