个人简介
University of Michigan, Ann Arbor PhD Chemical Engineering 2011
Tsinghua University, Beijing M.S. Chemical Engineering 2005
Tianjin University, Tianjin B.S. Chemical Engineering 2002
Academic Appointments
2014 Assistant Professor, Virginia Tech, Blacksburg.
2013 Postdoctoral Research Fellow, Stanford University/SLAC.
2014 Research areas: The d-band Chemisorption Theory, Dynamic Modeling of Surface Reactions
2011 Postdoctoral Research Fellow, University of Michigan, Ann Arbor.
2013 Research areas: Quantum Chemical Modeling of Electron-driven Reactions, Fuel Cell Catalysis
Education
2011• Ph.D. in Chemical Engineering, University of Michigan, Ann Arbor, MI.Advisor: Prof. Suljo Linic
Dissertation: First-principles Modeling of the Surface Reactivity of Transition Metals
2005• MSc in Chemical Engineering, Tsinghua University, Beijing, China.Advisor: Prof. Ming-han Han
2002• BSc in Chemical Engineering, Tianjin University, Tianjin, China.Advisor: Prof. Shun-he Zhong
研究领域
Ab Initio Machine Learning
Catalysis Theory and Informatics
Multiscale Modeling of Catalytic Processes
Nonadiabatic Surface Chemistry
Electronic Structure Theory and Methods
Single Atom/Site Catalysis
Electrocatalysis and Photocatalysis
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Catalyst design with machine learning H. Xin (News & Views) Nature Energy (2022) DOI: 10.1038/s41560-022-01112-8
Machine learning of lateral adsorbate interactions in surface reaction kinetics Tianyou Mou, Xue Han, Huiyuan Zhu, and Hongliang Xin Current Opinion in Chemical Engineering, 36, 2022, 100825 DOI: 10.1016/j.coche.2022.100825
Algorithm-derived feature representations for explainable AI in catalysis N. Omidvar and H. Xin Trends in Chemistry, 2021 DOI: 10.1016/j.trechm.2021.10.001
Bayesian learning of chemisorption for bridging the complexity of electronic descriptors Siwen Wang, Hemanth Somarajan Pillai, and Hongliang Xin* Nat. Commun, 11, 6132 (2020) DOI: 10.1038/s41467-020-19524-z
An Adaptive Machine Learning Strategy for Accelerating Discovery of Perovskite Electrocatalysts Zheng Li, Luke E. K. Achenie, and Hongliang Xin ACS Catal. 2020, 10, 7, 4377-4384 DOI: 10.1021/acscatal.9b05248
Ternary PtIrNi Catalysts for Efficient Electrochemical Ammonia Oxidation Yi Li, Xing Li, Hemanth Pillai, et al. ACS Catal. 2020, 10, 7, 3945-3957 DOI: 10.1021/acscatal.9b04670
Elucidation of key factors in nickel-diphosphines catalyzed isomerization of 2-methyl-3-butenenitrile Kaikai Liu, Hongliang Xin, and Minghan Han Journal of Catalysis 377 (2019) 13–19 DOI: 10.1016/j.jcat.2019.07.016
New Insights into Electrochemical Ammonia Oxidation on Pt(100) from First Principles Hemanth Pillai, Hongliang Xin Ind. Eng. Chem. Res., 2019, 58, 25, 10819 DOI: 10.1021/acs.iecr.9b01471
Predicting Catalytic Activity of High-Entropy Alloys for Electrocatalysis Siwen Wang, Hongliang Xin (invited) Chem 5, 502–504 (2019) DOI: 10.1016/j.chempr.2019.02.015
Toward artificial intelligence in catalysis Zheng Li, Siwen Wang, and Hongliang Xin* Nat. Catal., News & Views, 1, 641–642 (2018) DOI: 10.1038/s41929-018-0150-1
Overcoming Site Heterogeneity In Search of Metal Nanocatalysts Wang, Siwen; Omidvar, Noushin; Marx, Emily; Xin, Hongliang* ACS Combinatorial Science (Accepted) DOI: 10.1021/acscombsci.8b00070
Machine Learning Energy Gaps of Porphyrins with Molecular Graph Representations Li, Z., Omidvar, N., Chin, W. S., Robb, E., Morris, A., Achenie, L., and H. Xin* J. Phys. Chem. A, 2018, 122, 18, 4571-4578 DOI: doi:10.1021/acs.jpca.8b02842
Ambient ammonia synthesis via palladium-catalyzed electrohydrogenation of dinitrogen at low overpotential Jun Wang, L. Yu, B. Hu, G. Chen, H. Xin*, and X. Feng* Nat. Commun., 9, 1795 (2018) DOI: doi:10.1038/s41467-018-04213-9
Coordination Numbers for Unraveling Intrinsic Size Effects in Gold-catalyzed CO Oxidation Siwen Wang, Noushin Omidvar, Emily Marx, and Hongliang Xin* Phys. Chem. Chem. Phys., 2018, 20, 6055-6059 DOI: 10.1039/C8CP00102B
High-Throughput Screening of Bimetallic Catalysts Enabled by Machine Learning Zheng Li, Siwen Wang, Wei Shan Chin, and Hongliang Xin* J. Mater. Chem. A, 2017, 5, 24131-24138 DOI: 10.1039/C7TA01812F
Insights into Electrochemical CO2 Reduction on Tin Oxides from First-principles Calculations Siwen Wang, Jiamin Wang, and Hongliang Xin* Green Energy & Environment, 2017, 2, 2, 168-171 DOI: 10.1016/j.gee.2017.02.005
Orbitalwise Coordination Number for Predicting Adsorption Properties of Metal Nanocatalysts Xianfeng Ma and Hongliang Xin Phys. Rev. Lett. 118, 036101 DOI: 10.1103/PhysRevLett.118.036101
Chemical Bond Activation Observed with an X-ray Laser Martin Beye, Henrik Öberg, Hongliang Xin, et al. J. Phys. Chem. Lett., 2016, 7, pp 3647–3651 DOI: 10.1021/acs.jpclett.6b01543
Analyzing relationships between surface perturbations and local chemical reactivity of metal sites: Alkali promotion of O2 dissociation on Ag(111) Hongliang Xin, and Suljo Linic J. Chem. Phys. 144, 234704 (2016) DOI: 10.1063/1.4953906
Feature Engineering of Machine-Learning Chemisorption Models for Catalyst Design Zheng Li, Xianfeng Ma, and Hongliang Xin Catalysis Today, 280, 232–238 (2017) DOI: 10.1016/j.cattod.2016.04.013
Machine-learning-augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening Xianfeng Ma, Zheng Li, Luke Achenie, and Hongliang Xin J. Phys. Chem. Lett. 6, 3528 ( 2015) DOI: 10.1021/acs.jpclett.5b01660
Strong Influence of Coadsorbate Interaction on CO Desorption Dynamics Probed by Ultrafast X-ray Spectroscopy and Ab Initio Simulations H. Xin, J. LaRue, H. Öberg, et al. Phys. Rev. Lett. 114, 156101 (2015) DOI: 10.1103/PhysRevLett.114.156101
Probing the Transition State Region in Catalytic CO Oxidation on Ru H. Öström, H. Öberg, H. Xin, et al. Science, 1261747 (2015) DOI: 10.1126/science.1261747