当前位置: X-MOL首页全球导师 国内导师 › 唐浩

个人简介

唐浩,博士,副教授,硕士生导师,2019年度上海市青年科技英才“扬帆计划”获得者,2021年度上海海洋大学优秀研究生导师。 教育和工作经历 2021.12~至今:上海海洋大学 海洋科学学院 海洋渔业系 副教授(破格) 2019. 10~2021.11:上海海洋大学海洋科学学院海洋渔业系讲师 2017. 10~2019. 09:同济大学海洋与地球科学学院海洋科学博士后 2015. 10~2016. 10:日本东京海洋大学 生产系统研究室 特别研究生 2014. 09~2017. 07:上海海洋大学捕捞学专业博士 2011. 09~2014. 07:上海海洋大学 渔业专业 硕士 2007. 09~2011. 07:上海海洋大学海洋渔业科学与技术专业学士 专利 [1] 发明专利: 一种基于动水槽试验的围网网具体积估算方法. 唐浩, 刘伟, 邹柏强等. ZL201910991816.8 [2] 国际发明专利: Tang Hao, Zhang Feng, Sun Qiuyang et al. METHOD FOR ESTIMATING SHAPE OF MID-WATER TRAWL DURING OPERATION. Patent number: 2021101950 [3] 国际发明专利: Tang Hao, Liu Wei., Sun Qiuyang et al. METHOD FOR ESTIMATING VOLUME OF PURSE SEINE NET BASED ON DYNAMIC WATER TANK TEST. Patent number: 2021101976 [4] 发明专利: 一种适用于网片沉降试验的操作系统及试验方法. 唐浩, 许柳雄, 王少琴, 等. ZL201510823866.7. [5] 发明专利: 一种防止鱼群逃逸的青萤粉投放系统. 唐浩, 许柳雄, 王学昉, 等. ZL201410393374.4. [6] 实用新型专利: 一种纲索测速装置. 唐浩, 许柳雄, 周成, 等. 201210090614. X. [7] 软件著作权: “淞航号”延绳钓捕捞作业系统虚拟仿真课件系统软件,2020SR1147889. [8] 软件著作权: “淞航号”围网捕捞作业系统虚拟仿真课件系统软件,2020SR1147796 科研项目 [1] 国家自然科学基金青年基金(31902426),“基于网具内外流场特性的南极磷虾拖网结构优化研究”,经费来源为国家自然科学基金委,起至年月为2020.01-2022.12。(主持) [2] 2019年度“创新行动计划”上海市青年科技英才扬帆计划(19YF1419800),经费来源为上海市科学技术委员会,起至年月为2019.05-2022.04。(主持) [3] 第63批中国博士后科学基金面上资助一等资助(2018M630471),“基于动水槽试验的渔具网片水动力特性研究”,经费来源为中国博士后科学基金会,起至年月为2018.05-2019.10。(主持) [4] 大洋渔业资源可持续开发省部共建教育部重点试验室开放基金项目,“金枪鱼围网网具沉降特性研究”,经费来源为上海海洋大学,起至年月为2015.01-2016.12。(主持) [5] 上海海洋大学博士启动基金,“网目尺寸对金枪鱼围网性能影响效果评估”,经费来源为上海海洋大学,起至年月为2018.01-2019.12。(主持) [6] 上海地方高校大文科学术新人培育计划项目,经费来源为上海海洋大学,起至年月为2014.01-2014.12。(主持) 成果和荣誉 [1] 2021年上海海洋大学优秀硕士生导师。 [2] 2019年度上海市青年科技英才“扬帆计划”获得者。 [3] 2019年上海海洋大学优秀博士论文,“金枪鱼围网网具水动力特性及沉降性能研究”。 [4] 2019年度上海海洋大学科学技术奖,“金枪鱼围网捕捞装备关键技术研究与示范”,第2完成人。 [5] 2018年度海洋科学技术奖一等奖,“金枪鱼围网捕捞装备关键技术研究与示范”,第3完成人。 [6] 2018年度上海市浦东新区科技进步奖三等奖,“中西太平洋金枪鱼围网捕捞关键技术及应用”,第2完成人。 [7] 2017年度上海市优秀毕业生。 [8] 2016年度上海市研究生优秀成果(学位论文),“基于海上实测和模型试验的金枪鱼围网沉降性能分析”。 讲授课程 [1] 研究生课程:渔具力学,渔具数值模拟,渔具渔法前沿(留),渔具理论与设计学 [2] 本科生课程:远洋渔业资源概论,渔具力学基础,渔具模型试验,海洋渔业技术学,渔具理论与设计学,生物海洋学,资源与环境管理概论,当前环境热点问题

研究领域

[1] 渔具水动力和流场特性研究 [2] 生态高效渔具装备优化设计与研发 [3] 渔具和海洋工程装备仿真模拟研究 [4] 大型动水槽试验技术研究 [5] 渔具选择性物理机制研究

主要从事渔具水动力和仿真模拟、生态高效渔具装备研发和渔具选择性物理机制等研究。

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Tang H, Thierry N, Achile N P, Sun Q Y, Xu L X, Hu F X, Zou B Q. Hydrodynamic and turbulence flow characteristics of fishing nettings made of three twine materials at small attack angles and low Reynolds numbers. Ocean Engineering, 2022, 249, 110964. (IF=4.372; Q1) [2] Thierry N, Tang H*, Achile N P, Xu L X, Hu F X. Unsteady turbulent flow developing inside and around different parts of fluttering trawl net in flume tank. Journal of Fluids and Structures, 2022, 108, 103451. (IF=3.482; Q2) [3] Thierry N, Tang H*, Achile N P, Xu L X, David M A, Hu F X. Examining engineering performance of midwater trawl with different horizontal spread ratio, floatage and weight parameters: A case study of model net for Antarctic krill fisheries. International Journal of Naval Architecture and Ocean Engineering, 2022, 100448. (IF=2.538; Q2) [4] Tang H, Thierry N, Achile N P, He P G, Xu L X, Hu F X. Flume tank evaluation on the effect of liners on the physical performance of the Antarctic krill trawl. Frontiers in Marine Science, 2022, 8, 829615. (IF=5.247; Q1) [5] Wang Z Q, Tang H*, Xu L X, Zhang J. A review on fishing gear in China: Selectivity and application. Aquaculture and Fisheries, 2022, 02, 006. [6] Thierry N, Tang H*, Xu L X, Hu F X, Dong S C, Achille N P, Zou B Q. Comparison between physical model testing and numerical simulation using two-way fluid-structure interaction approach of new trawl design for coastal bottom trawl net. Ocean Engineering, 2021, 233, 109112. (IF=4.372; Q1) [7] Wang Z Q, Tang H*, Herrmann B, Xu L X. Catch Pattern for Antarctic krill (Euphausia superba) of Different Commercial Trawls in Similar Times and Overlapping Fishing Grounds. Frontiers in Marine Science, 2021, 8, 670663. (IF=5.247; Q1) [8] Thierry N, Tang H*, Achile N P, Xu L X, Zhou C, Hu F X. Experimental and numerical investigation on the hydrodynamic characteristics, twine deformation, and flow field around netting structure made of two types of twine materials for midwater trawls. Journal of Ocean University of China, 2021, (5), 1215-1235. (IF=1.179; Q4) [9] Wang Z Q, Tang H*, Xu L X, Zhang J, Hu F X. Application of a Controlled Aquarium Experiment to Assess the Effect of Mesh Sizes and Mesh Opening Angles on the Netting Selectivity of Antarctic Krill (Euphausia superba). Journal of Marine Science and Engineering, 2021, 9, 372. (IF=2.744; Q1) [10] Liu W, Tang H*, You X X, Dong S C, Xu L X, Hu F X. Effect of Cutting Ratio and Catch on Drag Characteristics and Fluttering Motions of Midwater Trawl Codend. Journal of Marine Science and Engineering, 2021, 9, 256. (IF=2.744; Q1) [11] Thierry N, Tang H*, Xu L X, Hu F X, You X X, David M A, Achille N P. Identifying the turbulent flow developing inside and around the bottom trawl by Electromagnetic Current Velocity Meter approach in the flume tank. Journal of Hydrodynamics, 2021, 133, 636–656. (IF=2.983; Q2) [12] Zou B Q, Thierry N, Tang H*, Xu L X, Zhou C, Wang X F, Dong S C, Hu F X. Flow field and drag characteristics of netting of cruciform structures with various sizes of knot structure using CFD models. Applied Ocean Research, 2020, 102466. (IF=3.761; Q1) [13] Thierry N, Tang H*, Xu L X, Xu L X, You X X, Hu F X, Achile N P, Kingdong R. Hydrodynamic performance of bottom trawls with different materials, mesh sizes and twine thicknesses. Fisheries Research, 2020, 221, 105403. (IF=2.817; Q2) [14] Thierry N, Tang H*, Achile N P, Xu L X, Hu F X, You X X. Comparative study on the full-scale prediction performance of four trawl nets used in the coastal bottom trawl fishery by flume tank experimental investigation. Applied Ocean Research, 2020, 95, 102022. (IF=3.761; Q1) [15] Zou B Q, Thierry N, Tang H*, Xu L X, Dong S C, Hu F X. The deformation characteristics and flow field around knotless polyethylene netting based on fluid structure interaction (FSI) one-way coupling. Aquaculture and Fisheries, 2022, 7(1), 89-102. [16] Tang H, Hu F X, Xu L X, Dond S C, Zhou C, Wang X F. Variations in hydrodynamic characteristics of netting panels with various twine materials, knot types, and weave patterns at small attack angles. Scientific Reports, 2019, 9(1). (IF=4.997; Q2) [17] Tang H, Xu L X, Hu F X, Kumazawa T, Hirayama M, Zhou C, Wang X F, Liu W. Effect of mesh size modifications on the sinking performance, geometry and forces acting on model purse seine nets. Fisheries Research, 2019, 211, 158-168. (IF=2.817; Q2) [18] Tang H, Xu L X, Hu F X. Hydrodynamic characteristics of knotted and knotless purse seine netting panels as determined in a flume tank. PLoS ONE. 2018, 13(2): e0192206. (IF=2.752; Q2) [19] Tang H, Xu L X, Zhou C, Wang X F, Zhu G P, Hu F X. The effect of environmental variables, gear design and operational parameters on sinking performance of tuna purse seine setting on free-swimming schools. Fisheries Research, 2017, 191, 151-159. (IF=2.817; Q2) [20] Tang H, Xu L X, Zhou C, Wang X F. Interpreting the Dynamic Submergence of Tuna Purse Seine: an Alternative Controllable Study by at-Lake Model Experiment to Sea-Trial. Turkish Journal of Fisheries and Aquatic Sciences, 2017, 17(6), 1089-1098. (IF=1.423; Q3) [21] Tang H, Hu F X, Xu L X, Dong S C, Zhou C, Wang X F. The effect of netting solidity ratio and inclined angle on the hydrodynamic characteristics of knotless polyethylene netting. Journal of Ocean University of China, 2017, 16(5), 814-822. (IF=1.179; Q4) [22] Thierry N, Tang H*, Xu L X, Hu F X. Effect of mesh size, twine material and trawl gear accessories on the bottom trawls hydrodynamic performance. International Journal of Fisheries and Aquatic Research, 2019, 4(4), 1-9. [23] Tang H, Xu L X, Wang X F, Hu F X. GAM applied to study the performance of tuna purse seine. Advanced Engineering and Technology II: Proceedings of the 2nd Annual Congress on Advanced Engineering and Technology (CAET 2015). CRC Press, 2015: 351. (EI) [24] Tang H, Xu L X, Zhou C, Wang X F. The application of Bootstrap method to the evaluation of physical model testing and the at-sea observations of the sinking of fishing net. Advanced Engineering and Technology II: Proceedings of the 2nd Annual Congress on Advanced Engineering and Technology (CAET 2015). CRC Press, 2015: 363. (EI) [25] Tang H, Xu L. Numerical simulation of knotless fishing nets in current. Hydraulic Engineering IV: Proceedings of the 4th International Technical Conference on Hydraulic Engineering. CRC Press, 2016: 53. (EI) [26] 银利强, 唐浩*, 许柳雄, 刘志强, 刘伟, 张天舒, 贾明秀. 南极磷虾拖网渔具系统动态变化. 中国水产科学, 2022, 29(6): 928-937. [27] 刘景彬, 唐浩*, 许柳雄, 刘志强, 邹柏强, 初文华. 倾斜状态对V形网板水动力和周围流场特征的影响.中国水产科学, 2022, 29(05): 755-769. [28] 刘景彬, 唐浩, 许柳雄, 孙秋阳, 刘伟, 银利强, 张锋. 基于CFD评估尺度效应对V型网板水动力的影响. 南方水产科学, 2022, 18(5): 128-137. [29] 唐浩*, 张馨茹, 朱安然, 刘伟, 孙秋阳, 张锋, 朱美熹, 许柳雄.网线直径和模拟渔获物对拖网网囊水阻力及形态影响. 上海海洋大学学报, 2022, 31(3): 770-780. [30] 朱美熹, 唐浩*, 刘伟, 张锋, 孙秋阳, 许柳雄, 胡夫祥. 不同水平扩张比和模拟渔获物对南极磷虾拖网整体形态影. 大连海洋大学学报, 2022, 1-10. [31] 陈明鑫, 许柳雄, 唐浩*, 周成. 基于多元变量的南极磷虾拖网作业状态影响因素分析. 上海海洋大学学报, 2021, 30(1): 144-154. [32] 王忠秋, 许柳雄, 唐浩*, 周成, 王学昉. 基于局部附网法的南极磷虾拖网网身大网目选择性.上海海洋大学学报, 2021, 30(4): 735-742. [33] 刘志强, 许柳雄, 唐浩*, 胡夫祥, 周成, 陈明鑫. 立式双曲面网板水动力性能及流场可视化研究. 水产学报, 2020, 44(8): 1360-1370. [34] 刘志强, 许柳雄, 唐浩*, 胡夫祥, 周成. 不同工作姿态下立式双曲面网板水动力及周围流场特性研究. 南方水产科学, 2020, 16(2): 87-98. [35] 刘伟, 许柳雄, 唐浩*, 胡夫祥, 周成. 流速和放网模式对金枪鱼围网网具形态的影响. 中国水产科学, 2020, 27(6): 727-738. [36] 刘伟, 许柳雄, 唐浩, 胡夫祥, 周成, 熊沢泰生, 平山完. 网目尺寸对金枪鱼围网沉降性能及网具形态的影响. 水产学报, 2019(6):1527-1538. [37] 刘志强, 许柳雄, 唐浩, 王腾, 周成, 贾明秀.拖网作业参数对南极磷虾捕捞效率的影响. 中国水产科学, 2019, 26(6): 1205-1212. [38] 唐浩, 许柳雄, 周成, 朱国平,王学昉. 基于GAM模型研究金枪鱼围网沉降性能影响因素. 水产学报, 2013, 37(6): 944-949. [39] 唐浩, 许柳雄, 王学昉, 周成, 兰光查, 王敏法, 叶旭昌, 朱国平. 金枪鱼围网模型试验结果与海上实测的比较评估. 中国水产科学, 2013, 20(4): 884-892. [40] 唐浩, 许柳雄, 周成, 陈新军, 朱国平, 周成, 王学昉. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响. 海洋环境科学, 2013, 32(4): 518-522. [41] 唐浩, 许柳雄, 王学昉, 徐国强, 周成, 朱国平. 两种典型渔法金枪鱼围网网具性能差异. 水产学报, 2015, 39(2): 275-283. [42] 唐浩, 许柳雄, 王学昉, 周成, 朱国平. 基于网具模型试验的金枪鱼围网性能分析. 中国水产科学, 2015, 22(3): 884-892. [43] 许柳雄, 唐浩. 围网网具性能研究进展. 中国水产科学, 2016, 23(3): 713-726.

推荐链接
down
wechat
bug