近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] Tang H, Thierry N, Achile N P, Sun Q Y, Xu L X, Hu F X, Zou B Q. Hydrodynamic and turbulence flow characteristics of fishing nettings made of three twine materials at small attack angles and low Reynolds numbers. Ocean Engineering, 2022, 249, 110964. (IF=4.372; Q1)
[2] Thierry N, Tang H*, Achile N P, Xu L X, Hu F X. Unsteady turbulent flow developing inside and around different parts of fluttering trawl net in flume tank. Journal of Fluids and Structures, 2022, 108, 103451. (IF=3.482; Q2)
[3] Thierry N, Tang H*, Achile N P, Xu L X, David M A, Hu F X. Examining engineering performance of midwater trawl with different horizontal spread ratio, floatage and weight parameters: A case study of model net for Antarctic krill fisheries. International Journal of Naval Architecture and Ocean Engineering, 2022, 100448. (IF=2.538; Q2)
[4] Tang H, Thierry N, Achile N P, He P G, Xu L X, Hu F X. Flume tank evaluation on the effect of liners on the physical performance of the Antarctic krill trawl. Frontiers in Marine Science, 2022, 8, 829615. (IF=5.247; Q1)
[5] Wang Z Q, Tang H*, Xu L X, Zhang J. A review on fishing gear in China: Selectivity and application. Aquaculture and Fisheries, 2022, 02, 006.
[6] Thierry N, Tang H*, Xu L X, Hu F X, Dong S C, Achille N P, Zou B Q. Comparison between physical model testing and numerical simulation using two-way fluid-structure interaction approach of new trawl design for coastal bottom trawl net. Ocean Engineering, 2021, 233, 109112. (IF=4.372; Q1)
[7] Wang Z Q, Tang H*, Herrmann B, Xu L X. Catch Pattern for Antarctic krill (Euphausia superba) of Different Commercial Trawls in Similar Times and Overlapping Fishing Grounds. Frontiers in Marine Science, 2021, 8, 670663. (IF=5.247; Q1)
[8] Thierry N, Tang H*, Achile N P, Xu L X, Zhou C, Hu F X. Experimental and numerical investigation on the hydrodynamic characteristics, twine deformation, and flow field around netting structure made of two types of twine materials for midwater trawls. Journal of Ocean University of China, 2021, (5), 1215-1235. (IF=1.179; Q4)
[9] Wang Z Q, Tang H*, Xu L X, Zhang J, Hu F X. Application of a Controlled Aquarium Experiment to Assess the Effect of Mesh Sizes and Mesh Opening Angles on the Netting Selectivity of Antarctic Krill (Euphausia superba). Journal of Marine Science and Engineering, 2021, 9, 372. (IF=2.744; Q1)
[10] Liu W, Tang H*, You X X, Dong S C, Xu L X, Hu F X. Effect of Cutting Ratio and Catch on Drag Characteristics and Fluttering Motions of Midwater Trawl Codend. Journal of Marine Science and Engineering, 2021, 9, 256. (IF=2.744; Q1)
[11] Thierry N, Tang H*, Xu L X, Hu F X, You X X, David M A, Achille N P. Identifying the turbulent flow developing inside and around the bottom trawl by Electromagnetic Current Velocity Meter approach in the flume tank. Journal of Hydrodynamics, 2021, 133, 636–656. (IF=2.983; Q2)
[12] Zou B Q, Thierry N, Tang H*, Xu L X, Zhou C, Wang X F, Dong S C, Hu F X. Flow field and drag characteristics of netting of cruciform structures with various sizes of knot structure using CFD models. Applied Ocean Research, 2020, 102466. (IF=3.761; Q1)
[13] Thierry N, Tang H*, Xu L X, Xu L X, You X X, Hu F X, Achile N P, Kingdong R. Hydrodynamic performance of bottom trawls with different materials, mesh sizes and twine thicknesses. Fisheries Research, 2020, 221, 105403. (IF=2.817; Q2)
[14] Thierry N, Tang H*, Achile N P, Xu L X, Hu F X, You X X. Comparative study on the full-scale prediction performance of four trawl nets used in the coastal bottom trawl fishery by flume tank experimental investigation. Applied Ocean Research, 2020, 95, 102022. (IF=3.761; Q1)
[15] Zou B Q, Thierry N, Tang H*, Xu L X, Dong S C, Hu F X. The deformation characteristics and flow field around knotless polyethylene netting based on fluid structure interaction (FSI) one-way coupling. Aquaculture and Fisheries, 2022, 7(1), 89-102.
[16] Tang H, Hu F X, Xu L X, Dond S C, Zhou C, Wang X F. Variations in hydrodynamic characteristics of netting panels with various twine materials, knot types, and weave patterns at small attack angles. Scientific Reports, 2019, 9(1). (IF=4.997; Q2)
[17] Tang H, Xu L X, Hu F X, Kumazawa T, Hirayama M, Zhou C, Wang X F, Liu W. Effect of mesh size modifications on the sinking performance, geometry and forces acting on model purse seine nets. Fisheries Research, 2019, 211, 158-168. (IF=2.817; Q2)
[18] Tang H, Xu L X, Hu F X. Hydrodynamic characteristics of knotted and knotless purse seine netting panels as determined in a flume tank. PLoS ONE. 2018, 13(2): e0192206. (IF=2.752; Q2)
[19] Tang H, Xu L X, Zhou C, Wang X F, Zhu G P, Hu F X. The effect of environmental variables, gear design and operational parameters on sinking performance of tuna purse seine setting on free-swimming schools. Fisheries Research, 2017, 191, 151-159. (IF=2.817; Q2)
[20] Tang H, Xu L X, Zhou C, Wang X F. Interpreting the Dynamic Submergence of Tuna Purse Seine: an Alternative Controllable Study by at-Lake Model Experiment to Sea-Trial. Turkish Journal of Fisheries and Aquatic Sciences, 2017, 17(6), 1089-1098. (IF=1.423; Q3)
[21] Tang H, Hu F X, Xu L X, Dong S C, Zhou C, Wang X F. The effect of netting solidity ratio and inclined angle on the hydrodynamic characteristics of knotless polyethylene netting. Journal of Ocean University of China, 2017, 16(5), 814-822. (IF=1.179; Q4)
[22] Thierry N, Tang H*, Xu L X, Hu F X. Effect of mesh size, twine material and trawl gear accessories on the bottom trawls hydrodynamic performance. International Journal of Fisheries and Aquatic Research, 2019, 4(4), 1-9.
[23] Tang H, Xu L X, Wang X F, Hu F X. GAM applied to study the performance of tuna purse seine. Advanced Engineering and Technology II: Proceedings of the 2nd Annual Congress on Advanced Engineering and Technology (CAET 2015). CRC Press, 2015: 351. (EI)
[24] Tang H, Xu L X, Zhou C, Wang X F. The application of Bootstrap method to the evaluation of physical model testing and the at-sea observations of the sinking of fishing net. Advanced Engineering and Technology II: Proceedings of the 2nd Annual Congress on Advanced Engineering and Technology (CAET 2015). CRC Press, 2015: 363. (EI)
[25] Tang H, Xu L. Numerical simulation of knotless fishing nets in current. Hydraulic Engineering IV: Proceedings of the 4th International Technical Conference on Hydraulic Engineering. CRC Press, 2016: 53. (EI)
[26] 银利强, 唐浩*, 许柳雄, 刘志强, 刘伟, 张天舒, 贾明秀. 南极磷虾拖网渔具系统动态变化. 中国水产科学, 2022, 29(6): 928-937.
[27] 刘景彬, 唐浩*, 许柳雄, 刘志强, 邹柏强, 初文华. 倾斜状态对V形网板水动力和周围流场特征的影响.中国水产科学, 2022, 29(05): 755-769.
[28] 刘景彬, 唐浩, 许柳雄, 孙秋阳, 刘伟, 银利强, 张锋. 基于CFD评估尺度效应对V型网板水动力的影响. 南方水产科学, 2022, 18(5): 128-137.
[29] 唐浩*, 张馨茹, 朱安然, 刘伟, 孙秋阳, 张锋, 朱美熹, 许柳雄.网线直径和模拟渔获物对拖网网囊水阻力及形态影响. 上海海洋大学学报, 2022, 31(3): 770-780.
[30] 朱美熹, 唐浩*, 刘伟, 张锋, 孙秋阳, 许柳雄, 胡夫祥. 不同水平扩张比和模拟渔获物对南极磷虾拖网整体形态影. 大连海洋大学学报, 2022, 1-10.
[31] 陈明鑫, 许柳雄, 唐浩*, 周成. 基于多元变量的南极磷虾拖网作业状态影响因素分析. 上海海洋大学学报, 2021, 30(1): 144-154.
[32] 王忠秋, 许柳雄, 唐浩*, 周成, 王学昉. 基于局部附网法的南极磷虾拖网网身大网目选择性.上海海洋大学学报, 2021, 30(4): 735-742.
[33] 刘志强, 许柳雄, 唐浩*, 胡夫祥, 周成, 陈明鑫. 立式双曲面网板水动力性能及流场可视化研究. 水产学报, 2020, 44(8): 1360-1370.
[34] 刘志强, 许柳雄, 唐浩*, 胡夫祥, 周成. 不同工作姿态下立式双曲面网板水动力及周围流场特性研究. 南方水产科学, 2020, 16(2): 87-98.
[35] 刘伟, 许柳雄, 唐浩*, 胡夫祥, 周成. 流速和放网模式对金枪鱼围网网具形态的影响. 中国水产科学, 2020, 27(6): 727-738.
[36] 刘伟, 许柳雄, 唐浩, 胡夫祥, 周成, 熊沢泰生, 平山完. 网目尺寸对金枪鱼围网沉降性能及网具形态的影响. 水产学报, 2019(6):1527-1538.
[37] 刘志强, 许柳雄, 唐浩, 王腾, 周成, 贾明秀.拖网作业参数对南极磷虾捕捞效率的影响. 中国水产科学, 2019, 26(6): 1205-1212.
[38] 唐浩, 许柳雄, 周成, 朱国平,王学昉. 基于GAM模型研究金枪鱼围网沉降性能影响因素. 水产学报, 2013, 37(6): 944-949.
[39] 唐浩, 许柳雄, 王学昉, 周成, 兰光查, 王敏法, 叶旭昌, 朱国平. 金枪鱼围网模型试验结果与海上实测的比较评估. 中国水产科学, 2013, 20(4): 884-892.
[40] 唐浩, 许柳雄, 周成, 陈新军, 朱国平, 周成, 王学昉. 基于GAM模型研究时空及环境因子对中西太平洋鲣鱼渔场的影响. 海洋环境科学, 2013, 32(4): 518-522.
[41] 唐浩, 许柳雄, 王学昉, 徐国强, 周成, 朱国平. 两种典型渔法金枪鱼围网网具性能差异. 水产学报, 2015, 39(2): 275-283.
[42] 唐浩, 许柳雄, 王学昉, 周成, 朱国平. 基于网具模型试验的金枪鱼围网性能分析. 中国水产科学, 2015, 22(3): 884-892.
[43] 许柳雄, 唐浩. 围网网具性能研究进展. 中国水产科学, 2016, 23(3): 713-726.