近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] Zhou Y#, Gui L#, Wei W, Xu E, Zhou W, Sokolova I, Li M*, Wang Y*. Low particle concentrations of nanoplastics impair the gut health of medaka. Aquatic toxicology, 2023, 256, 106422. (IF5.202)
[2] Liu D#, Gui L#, Zhu Y, Xu C, Zhou W, Li M. Chromosome-Level Assembly of Male Opsariichthys bidens Genome Provides Insights into the Regulation of the GnRH Signaling Pathway and Genome Evolution. Biology, 2022, 11(10), 1500. (IF5.168)
[3] Zhou T, Fang Z, Duarte, D.F.C, Fernandes, S.A., Lu Y, Guo J, Gui, L*, Chen L*. Transcriptome Analysis of Immune Response against Streptococcus agalactiae Infection in the Nile Tilapia GIFT Strain. Fishes 2022, 7, 246. (IF3.17)
[4] Gui L, Zhao Y, Xu D, Luo J, Zhou W, Li M. Quick detection of Carassius auratus herpesvirus (CaHV) by recombinase-aid amplification lateral flow dipstick (RAA-LFD) method. Frontiers in Cellular and Infection Microbiology. 2022 Sep 12;12:981911. (IF6.073)
[5] Xu C, Li Y, Wen Z, Jawad M, Gui L*, Li M*. Spinyhead Croaker Germ Cells Gene dnd Visualizes Primordial Germ Cells in Medaka. Life. 2022; 12(8):1226. (IF3.253)
[6] Xia J, Liu D, Zhou W, Yi S, Wang X, Jawad M, Xu H, Gui L, Li M*. Comparative transcriptome analysis of brain and gonad reveals reproduction-related miRNAs in the giant prawn, Macrobrachium rosenbergii. Frontiers in Genetics. 2022 Aug 26;13:990677. (IF4.772)
[7] Wang M, Xia J, Jawad M, Wei W, Gui L, Liang X, Yang J, Li M. Transcriptome sequencing analysis of sex-related genes and miRNAs in the gonads of Mytilus coruscus. Frontiers in Marine Science. 2022, 9:1013857.
[8] Wei W, He J. Yaqoob M, Gui L, Ren J, Li J, Li M. Integrated mRNA and miRNA Expression Profile Analysis of Female and Male Gonads in Acrossocheilus fasciatus. Biology. 2022,11,1296.
[9] Tang R, Xu C, Zhu Y, Yan J, Yao Z, Zhou W, Gui L*, Li M*. Identification and expression analysis of sex biased miRNAs in Chinese hook snout carp Opsariichthys bidens. Frontiers in Genetics. 2022 Sep 2;13:990683. (IF4.772)
[10] Chen X, Kan Y, Zhong Y, Jawad M, Wei W, Gu K, Gui L*, Li M*. Generation of a normal long-term-cultured Chinese Hook Snout Carp spermatogonial stem cell line capable of sperm production in vitro. Biology. 2022; 11(7):1069. (IF5.168)
[11] Kan Y, Zhong Y, Jawad M, Chen X, Liu D, Ren M, Xu G, Gui L*, Li M*. Establishment of a Coilia nasus gonadal somatic cell line capable of sperm induction in vitro. Biology. 2022; 11(7):1049. (IF5.168)
[12] Gui L, Li X, Lin S, Zhao Y, Lin P, Wang B, Tang R, Guo J, Zu Y, Zhou Y*, Li M*. Low-Cost and Rapid Method of DNA Extraction from Scaled Fish Blood and Skin Mucus. Viruses. 2022 Apr 18;14(4):840.(IF5.818)
[13] Chen X#, Zhu Y#, Zhu T, Song P, Guo J, Zhong Y, Gui L*, Li M*. Vasa identifies germ cells in embryos and gonads of Oryzias celebenis. Gene. 2022 May 20; 823:146369. (IF3.913)
[14] Gui L, Xu L, Liu Z, Zhou Z, Sun Z. (2022). Carotenoid-rich microalgae promote growth and health conditions of Artemia nauplii. Aquaculture. Volume 546: 737289. (IF5.135)
[15] 柯飞#,桂朗#,李涛,张奇亚. (2021). 克氏原螯虾白斑病毒株(WSSV- Cc)基因组的一个印迹. 水产学报. 45(9):1491-1499.
[16] Song P#, Sun B#, Zhu Y, Zhong Y, Guo J, Gui L*, Li M*. Bucky ball induces primordial germ cell increase in medaka. Gene, 2021 Feb 5;768:145317. (IF3.913)
[17] Ke F#, Gui L#, Li T, Li F, Zhao X, Chen Z, Lei C, Zhang Q. (2021). The features of an emerging whispovirus isolate from freshwater crayfish. Aquaculture Reports. 20: 100728. (IF3.385)
[18] Gui L, Lu W, Shi M, Hu R, Lu Y. (2020). Liver DNA methylation and transcriptome between 1- and 3-year-old grass carp. Aquaculture and Fisheries.
[19] Xie J#, Zhong Y#, Zhao Y, Xie W, Guo J, Gui L*, Li M* (2020). Characterization and expression analysis of gonad specific igf3 in the medaka ovary. Aquaculture and Fisheries.
[20] Pu Q#, Ma Y#, Zhong Y, Guo J, Gui L*, Li M*(2020). Characterization and expression analysis of sox3 in medaka gonads. Aquaculture and Fisheries.
[21] Xie Z#, Song P#, Zhong Y, Guo J, Gui L*, Li M*(2020). Medaka gcnf is a component of chromatoid body during spermiogenesis. Aquaculture and Fisheries.
[22] Sun B#, Gui L#, Liu R, Hong Y, Li M*(2020). Medaka oct4 is essential for gastrulation, central nervous system development and angiogenesis. Gene. 733:144270. (IF3.913)
[23] Sun L#, Zhong Y#, Qiu W, Guo J, Gui L*, Li M*(2020). MiR-26 regulates ddx3x expression in medaka (Oryzias latipes) gonads. Comparative Biochemistry and Physiology Part B. 246-247:110456. (IF2.495)
[24] Zhao Y#, Zhang Y#, Zhong Y, Guo J, Gui L*, Li M*(2020). Molecular identification and expression analysis of foxl2 and sox9b in Oryzias celebensis. Aquaculture and Fisheries.
[25] 赵雲, 桂朗*, 陈良标. 罗非鱼产业发展现状[J]. 中国水产, 2020(10).
[26] Zhou T. #, Gui L. #, Liu M., Li W., Hu P., Duarte D.F.C., Niu H., Chen L. (2019) Transcriptomic responses to low temperature stress in the Nile tilapia, Oreochromis niloticus. Fish Shellfish Immunol 84, 1145-56.
[27] Sun B#, Gui L#, Liu R, Hong Y, Li M*. (2019). Medaka oct4 is essential for gastrulation, central nervous system development and angiogenesis. Gene. In press.
[28] Liang X#, W J#, Liu Y#, Peng L, Li Y, Batista F, Power D, Gui L*, Yang J*. (2019). Complete genome of a marine bacterium Vibrio chagasii ECSMB14107 with the ability to infect mussels. Marine Genomics. 10.1016/j.margen.2019.04.008.
[29] Jian Wang, Yimeng Liu, Shouwen Jiang, Wenhao Li, Lang Gui, Tao Zhou, Wanying Zhai, Zixuan Lin, Jiaying Lu, Liangbiao Chen. (2019). Transcriptomic and epigenomic alterations of Nile tilapia gonads sexually reversed by high temperature. Aquaculture.
[30] Bi Q#, Zhao Y#, Du W#, Lu Y, Gui L, Zheng Z, Yu H, Cui Y, Liu Z, Cui T, Cui D, Liu X, Li Y, Fan S, Hu X, Fu G, Ding J, Ruan C*, Wang L*. Pseudomolecule-level assembly of the Chinese oil tree yellowhorn (Xanthoceras sorbifolium) genome. GigaScience 2019, 8(6). (IF7.3)
[31] 桂朗, 张奇亚. (2019). 中国水产动物病毒学研究概述. 水产学报, 43, 168-87.
[32] Wang J, Liu Y, Jiang S, Li W, Gui L, Zhou T, Zhai W, Lin Z, Lu J, Chen L. (2019). Transcriptomic and epigenomic alterations of Nile tilapia gonads sexually reversed by high temperature. Aquaculture, 508: 167-177.
[33] Zhu,T. #, Gui,L. #, Zhu,Y., Li,Y., Li,M.(2018). Dnd is required for primordial germ cell specification in Oryzias celebensis. Gene,679,36-43.
[34] Gui,L., Li,T., Zhang,Q. (2018). Fish kidney cells show higher tolerance to hyperosmolality than amphibian. Aquaculture and Fisheries, 3, 135-138.
[35] Gui,L., Chinchar,V., Zhang,Q. (2018).Molecular basis of pathogenesis of emerging viruses infecting aquatic animals. Aquaculture and Fisheries, 3, 1-5.
[36] 廉颖,桂朗*,张俊彬. (2018). 不同渗透压条件下金钱鱼肾原代细胞的差异蛋白分析[J].上海海洋大学学报, 27(06):855-863.
[37] Gui,L., Zhang,P., Zhang,Q., & Zhang,J. (2016). Two hepcidins from spotted scat (Scatophagus argus) possess antibacterial and antiviral functions in vitro. Fish & Shellfish Immunology,50,191-199.
[38] Gui,L., Zhang,P., Liang,X., Su,M., Wu,D., & Zhang,J. (2016). Adaptive responses to osmotic stress in kidney-derived cell lines from Scatophagus argus, a euryhaline fish. Gene, 583(2), 134.
[39] Wang,J. #, Gui,L. #, Chen,Z, & Zhang,Q. (2016). Mutations in the c-terminal region affect subcellular localization of Crucian carp herpesvirus (CaHV) GPCR. Virus Genes, 52(4), 484-494.
[40] Su, M., Mu, X., Gui, L., Zhang, P., Zhou, J., Ma, J., & Zhang, J. (2016). Dopamine regulates renal osmoregulation during hyposaline stress via drd1 in the spotted scat (Scatophagus argus). Sci Rep, 6, 37535.
[41] Su, M., Hu, P., Zhou, J., Ma, J., Li, S., Gui, L., & Zhang, J. (2016). Branchial transcriptional responses of spotted scat, Scatophagus argus, to acute hypo-osmotic stress. Agri Gene, 1, 100-108.
[42] Mu, X., Su, M., Gui, L., Liang, X., Zhang, P., Hu, P., Liu, Z., & Zhang, J. (2015). Comparative renal gene expression in response to abrupt hypoosmotic shock in spotted scat (Scatophagus argus). General & Comparative Endocrinology, 215, 25-35.
[43] Liu, H., Mu, X., Gui, L., Su, M., Li, H., Zhang, G., Liu, Z., & Zhang, J. (2015). Characterization and gonadal expression of foxl2 relative to cyp19a genes in spotted scat Scatophagus argus. Gene, 561(1), 6-14.
[44] Hu, P., Li, S., Zhong, Y., Mu, X., Gui, L., & Zhang, J. (2014). Identification of fxyd genes from the spotted scat (Scatophagus argus): molecular cloning, tissue-specific expression, and response to acute hyposaline stress. Comparative Biochemistry & Physiology Part B Biochemistry & Molecular Biology, 174(1), 15-22.
[45] Gui, L., Wang, B., Li, F. H., Sun, Y. M., Luo, Z., & Xiang, J. (2012). Blocking the large extracellular loop (LEL) domain of fc tetraspanin-3 could inhibit the infection of white spot syndrome virus (WSSV) in Chinese shrimp, Fenneropenaeus chinensis. Fish & Shellfish Immunology, 32(6), 1008-1015.
[46] 桂朗,王兵,王丽燕,李富花,相建海. (2012). 昆虫围食膜结构与功能概述及其对对虾WSSV病防治研究的启示,海洋科学,第36卷,第4期,126-131页.
[47] Wang, B., Li, F., Luan, W., Xie, Y., Zhang, C., Gui, L., Yan, H., Xiang, J., (2008). Comparison of gene expression profiles of Fenneropenaeus chinensis challenged with WSSV and Vibrio. Marine Biotechnology. 10(6):664-675.
[48] Zhou,G., Gui, L., Li, Z. Q., Yuan, X, & Zhang, Q. (2008). Generation and characterization of monoclonal antibodies against the flounder Paralichthys olivaceus rhabdovirus. Journal of Virological Methods, 148(1-2):205-210.
[49] Zhou, G, Gui, L., Li, Z, Yuan, X., & Zhang, Q. (2008). Establishment of a Chinese sturgeon (Acipenser sinensis) tail fin cell line and its susceptibility to frog iridovirus. Journal of Fish Biology. 73(8):2058-2067. 2008.
[50] 王兵,桂朗,李富花,相建海. (2008). 抑制性消减杂交技术结合cDNA MICROARRAY技术在中国明对虾WSSV感染后差异表达基因研究上的应用,海洋与湖沼,第39卷,第5期,455-461页.
[51] 桂朗,王兵,李富花,相建海. (2008). 四跨膜蛋白超家族Tetraspanin的免疫功能研究进展,生物化学与生物物理进展,第35卷,第11期,1231-1238页.
[52] 桂朗,李正秋,张奇亚. (2007).牙鲆一株弹状病毒病原的分离与鉴定,水生生物学报,第31卷,第3期,345-353页.
[53] Zhang, Q, Tao, J., Gui, L., Zhou, G., Ruan, H., Li, Z. & Gui, J. (2007). Isolation and characterization of Scophthalmus maximus rhabdovirus. Diseases of Aquatic Organisms. 74(2):95-105.