当前位置: X-MOL首页全球导师 国内导师 › 蒲飞

个人简介

Employment 10.2021-now assistant professor, Beijing Normal University 05.2020-07.2021 postdoc, University of Luxembourg 01.2019-05.2020 postdoc, University of Utah 07.2018-12.2018 postdoc, EPFL Education 09.2013-06.2018 PhD in mathematics, EPFL 09.2010-06.2013 Master in mathematics, Beijing Normal University 09.2006-06.2010 Bachelor in mathematics, Beijing Normal University

研究领域

stochastic analysis, stochastic partial differential equation

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Li, Z. and Pu, F.: Gaussian fluctuation for spatial average of super-Brownian motion. To appear in Stoch. Anal. Appl. (2022) Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F.: Central limit theorems for spatial averages of the stochastic heat equation via Malliavin-Stein's method. To appear in Stoch PDE: Anal Comp. (2022) Nourdin, I. and Pu, F.: Gaussian fluctuation for Gaussian Wishart matrices of overall correlation. Statist. Probab. Lett. Paper No. 109269, 11 pp. (2022) Pu, F.: Gaussian fluctuation for spatial average of parabolic Anderson model with Neumann/Dirichlet boundary conditions. Tran. Amer. Math. Soc. 375, no. 4, 2481--2509 (2022) Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: Spatial ergodicity and central limit theorem for parabolic Anderson model with delta initial condition. J. Funct. Anal. 282, no. 2, Paper No. 109290, 35 pp. (2022) Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: Central limit theorems for parabolic stochastic partial differential equations. Ann. Inst. H. Poincar\'e Probab. Statist. 58, No.2, 1052--1077 (2022) Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: Spatial ergodicity for SPDEs via Poincar\'e-type inequalities. Electron. J. Probab. 26, 1--37 (2021) Chen, L., Khoshnevisan, D., Nualart, D. and Pu, F: A CLT for dependent random variables, with applications to infinitely-many interacting diffusion processes. Proc. of the A.M.S. 149, no. 12, 5367--5384 (2021) Khoshnevisan, D., Nualart, D. and Pu, F.: Spatial stationarity, ergodicity and CLT for parabolic Anderson model with delta initial condition in dimension $d \geq 1$. SIAM J. Math. Anal. 53(2), 2084-2133 (2021) Dalang, R.C. and Pu, F.: Optimal lower bounds on hitting probabilities for stochastic heat equations in spatial dimension $k \geq 1$. Electron. J. Probab. 25, no. 40, 31pp (2020) Dalang, R.C. and Pu, F.: Optimal lower bounds on hitting probabilities for non-linear systems of stochastic fractional heat equations. Stochastic Process. Appl. 131 , 359--393 (2021) Dalang, R.C. and Pu, F.: On the density of the supremum of the solution to the linear stochastic heat equation. Stoch PDE: Anal Comp. 8, 461--508 (2020) Li, Z.H. and Pu, F. : Strong solutions of jump-type stochastic equations. Electron. Commun. Probab. 17, no. 33, 13pp (2012)

推荐链接
down
wechat
bug