当前位置: X-MOL首页全球导师 国内导师 › 洪文明

个人简介

1999/07,毕业于北京师范大学,获理学博士学位 1999/07--2001/06,复旦大学数学所,博士后 2001/11—2002/11,加拿大Carleton 大学数学系,博士后 2005/07--2006/06, 美国Minnesota大学数学系,访问学者 2001/06--2006/06,北京师范大学数学系,副教授 2005/12, 博士生导师 2006/07--,北京师范大学数学学院,教授

研究领域

Markov过程,分枝过程,大偏差,随机环境中的随机游动(RWRE),分枝随机游动

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Hong,Wenming and Wu Rong(1998), On the intersection problem of OU-type processes with continuous trajectory(in Chinese), Journal of Engineering Mathematics, Vol.15, No.2, 15-22. Hong, Wenming(1998), Cential limit theorem for the occupation time of catalytic super-Brownian motion. Chinese Science Bulletin, Vol.43, No.24, 2035-2040. Hong, Wenming(1999), The occupation density field for the catalytic super-Brownian motion, Chinese Annals of Mathematics(Ser.B), Vol.20 No.4 , 447-454. Wenming Hong and Zenghu Li(1999), A central limit theorem for the super-Brownian motion with super-Brownian immigration, Journal of Applied Probability, 36:4 (1999), 1218-1224. Hong, Wenming(2000), Ergodic theorem for the two-dimensional super-Brownian motion with super-Brownian immigration, Progress in Nature Science, 10:2, 111-116. Hong, Wenming and Wang, Zikun(2000), Immigration processes in catalytic medium, Science in China(Series A), Vol.43 No.1, 59-64. Hong Wenming(2000), Super Ornstein-Uhlenbeck processes in catalytic medium, Advances in Mathematics(China), Vol.29, No.6, 490-498. Hong, Wenming and Zhong, Huifang(2001), On the support of the super-Brownian motion with super-Brownian immigration. Progress in Natural Science, Vol. 11 No.6, 468-475. Wenming Hong and Zenghu Li(2001), Fluctuations of a super-Brownian motion with randomly controlled immigration. Statistics and Probability Letters, 51, 285-291. Wenming Hong (2002), Longtime behavior for the occupation time processes of a super-Brownian motion with random immigration. Stochastic Process and their Applications, Vol.102 No.1 43-62. Wenming Hong(2002), Moderate deviation for the super-Brownian motion with super-Brownian immigration, Journal of Applied Probability, Vol.39 No.4 ,829-838. Wenming Hong(2003), Limiting behavior of the super-Brownian motion with super-Brownian immigration, C.R.Math.Acad.Sci.Soc.R.Can.25(1),1-6. Hong, Wenming and Zhao, Xuelei(2003), Occupation time large deviations for the super-Brownian motion with random immigration, Chinese Annals of Mathematics (Ser.A). 24 (2),151--160; Chinese Journal of Contemporary Mathematics, 24(2), 119—130. Wenming Hong(2003), Large deviations for the super-Brownian motion with super-Brownian immigration, Journal of Theoretical Probability, Vol.16(4), 899-922. Wenming Hong(2004),A note on 2-level superprocesses, Journal of Applied Probability, Vol.41(1), 202-210. Wenming Hong(2004),Functional central limit theorem for super α-stable processes. Science in China Series A-Mathematics, Vol.47, No.6, 874-881. Wenming Hong(2005),Quenched mean limit theorems for the super-Brownian motion with super-Brownian immigration, Infinite Dimensional Analysis,Quantum Probability and Related Topics, Vol.8, No.3, 383-396. Wenming Hong and Zenghu Li(2005),Large and moderate deviations for occupation times of immigration superprocesses, Infinite Dimensional Analysis,Quantum Probability and Related Topics, Vol. 8, No.4, 593-603. Wenming Hong and Ofer Zeitouni (2007) A quenched CLT for super-Brownian motion with random immigration, Journal of Theoretical Probability, Vol.20, No.4, 807-820. Wenming Hong(2008),Moderate deviations for the quenched mean of the super-Brownian motion with random immigration Science in China Series A-Mathematics, Vol. 51 (3): 343-350. Wenming Hong(2008),Quenched large deviation for super-Brownian motion with random immigration. Infinite Dimensional Analysis,Quantum Probability and Related Topics, Vol.11, No.4, 627-637. Wang Shidong and Hong Wenming(2010),Alternative Proof for the Recurrence and Transience of Random Walks in Random Environment with Bounded Jumps (in Chinese). Acta Mathematica Scientia, Vol 30A (2), 289-296. Wenming Hong and Huaming Wang(2010), Quenched moderate deviations principle for random walk in random environment, Science in China Series A-Mathematics, Vol. 53 (8): 1947-1956 Wenming Hong and Lin Zhang(2010), Branching structure for the transient (1;R)-random walk in random environment and its applications, Infinite Dimensional Analysis,Quantum Probability and Related Topics, Vol. 13, No. 4, 589–618. Wenming Hong and Huaming Wang(2013), Intrinsic branching structure within (L-1) random walk in random environment and its applications, Infinite Dimensional Analysis,Quantum Probability and Related Topics, Vol. 16, No. 1,1350006 (14 pages). Wenming Hong and Hongyan Sun(2013), Renewal Theorem for $(L,1)$-Random Walk in Random Environment, Acta Mathematica Scientia, English Series, 33B(6):1736–1748. Wenming Hong and Huaming Wang(2014), Intrinsic branching structure within random walk on $\mathbb{Z}$ , Theory Probab. Appl. 58-4, pp. 640-659. Wenming Hong, Ke Zhou and Yiqiang Q. Zhao(2014), Explicit stationary distribution of the $(L,1)$-reflecting random walk on the half line, Acta Mathematica Sinica, English Series, 2014, 30(3): 371-388. Wenming Hong, Meijuan Zhang and Yiqiang Q. Zhao(2014), Light-tailed behavior of stationary distribution for state-dependent random walks on a strip, Frontiers of Mathematics in China, vol .9, no .4, 813-834. Wenming Hong, Hui Yang and Ke Zhou(2015), Scaling limit of the local time of the Sinai's random walk , Frontiers of Mathematics in China, 10(6), pp 1313-1324. arXiv:1403.2045. Wenming Hong and Meijuan Zhang(2016), Branching structure for the transient random walk on a strip in a random environment, Chinese Annals of Mathematics, 2016,37A(4):405-420. Chinese Journal of Contemporary Mathematics, 2016, Vol. 37, No. 4, pp. 347–362. Wenming Hong and Huaming Wang (2016) ,Branching Structures Within Random Walks and Their Applications. Branching Processes and Their Applications pp 57-73 . Lecture Notes in Statistics book series (LNS, volume 219), Springer International Publishing. Wenming Hong, Ke Zhou (2017), A note on the passage time of finite state Markov chains, Communications in Statistics – Theory and Methods, Volume 46 (1), 438-445 Wenming Hong, Hui Yang (2018), Scaling limit theorems for the $\kappa$-transient random walk in random and non-random environment, , arXiv:1412.4326,Front. Math. China 13 (2018), no. 5, 1033–1044. Wenming Hong, Yao Ji, Vladimia Vatutin (2018),Reduced critical Bellman-Harris branching processes for small populations, Discrete Mathematics and Applications, (2018) Volume 28, Issue 5 319-330.( 30,No 3, 25–39 (in Russian)) Wenming Hong, Minzhi Liu, Vladimia Vatutin (2019), Limit theorems for supercritical MBPRE with linear fractional offspring distributions , Markov Processes and Related Fields, 2019, v.25, Issue 1, 1-31 Wenming Hong,, Xiaoyue Zhang(2019), Asymptotic behaviour of heavy-tailed branching processes in random environments. Electronic Journal of Probability 2019, Vol. 24, paper no. 56, 1-17. Wenming Hong, Minzhi Liu (2019), On the transience and recurrence for the Lamperti's random walk on the Galton-Watson trees , SCIENCE CHINA Mathematics, 62 (2019), no. 9, 1813–1822. Wenming Hong, Hui Yang (2019), Cutoff Phenomenon for Nearest Lamperti’s Random Walk, Methodology and Computing in Applied Probability, 21 (2019), no. 4, 1215–1228. 王华明, 张琳, 张美娟, 洪文明*(2019),随机游动轨道中的分枝结构,中国科学: 数学,2019 年,第49 卷,第3 期, 517_534. Xiaoyue Zhang, Wanting Hou, Wenming Hong (2020), Limit theorems for the minimal position of a branching random walk in random environment. Markov Processes and Related Fields, 26, 839-860. Wanting Hou, Wenming Hong(2020), Minimal of independent time-inhomogeneous random walks, Infinite Dimensional Analysis,Quantum Probability and Related Topics,Vol. 23, No. 3 (2020). 2050021 (13 pages). 杨慧, 周珂, 侯婉婷, 洪文明*(2020), 两类带渐近扰动的随机过程的若干性质, 中国科学: 数学, 2020 年,第50 卷,第1 期, 179_196. Wanting Hou, Xiaoyue Zhang, Wenming Hong (2021), Extremum of a time-inhomogeneous branching random walk. Front. Math. China 16 (2021), no. 2, 459–478. Xiaoyue Zhang, Wenming Hong (2021), Fixed points of the smoothing transformation in random environment, Front. Math. China, 2021, 16(4),1191-1210. Wenming Hong, Shengli Liang, Xiaoyue Zhang (2022), Conditional $L^{1}$-Convergence for the martingale of a critical branching process in random environment, Proceedings of the Steklov Mathematical Institute, Vol. 316, pp. 184–194. Xiaoyue Zhang, Wenming Hong(2022), Quenched convergence rates for a supercritical branching process in a random environment, Statist. Probab. Lett.181(2022),Paper No. 109279, 8 pp.. Lv, Y. and Hong, W. (2022+), Quenched small deviation for the trajectory of a random walk with time-inhomogeneous random environment. ArXiv e-prints, arXiv:1803.08772. Theory Probab. Appl., to appear. Preprint Xiaoyue Zhang, Wenming Hong(2021), Minimal position of branching random walks in random environment: critical case. Preprint. Lv, Y. and Hong, W. (2021) , On the barrier problem of branching random walk in time-inhomogeneous random environment, Preprint. Wenming Hong, Shengli Liang (2022), Quenched invariance principles for random walks in random environment conditioned to stay positive. Preprint.

推荐链接
down
wechat
bug