个人简介
Bio
B.S., University of California Berkley (1989)
Fulbright Fellowship, Helsinki University (1990)
Ph.D., Stanford University (1996)
Postdoctoral Studies, Universite' Louis Pasteur (1999)
Awards
Royal Society of Chemistry, Pedlar Award, 2015
Eun Lee Lectureship, Korea, 2015
JSPS Fellow, 2013
ACS Cope Scholar Award, 2013
Fellow of the Royal Society of Chemistry, 2013
GlaxoSmithKline Scholar Award, 2011
Mukaiyama Award, 2010
Humboldt Research Award, 2009
Tetrahedron Young Investigator Award, 2009
Novartis Lectureship Award, 2008
Presidential Green Chemistry Award, 2007
Dowpharma Prize, 2007
Elias J. Corey Award, 2007
Solvias Ligand Prize, 2006
Johnson & Johnson Focused Giving Award, 2005
Japanese Society of Synthetic Chemistry, Lectureship on Organic Synthesis, 2005
Camille Dreyfus Teacher Scholar Award, 2003
Alfred P. Sloan Research Fellowship, 2003
Cottrell Scholar Award, 2002
Lilly Grantee Award, 2002
Frasch Foundation Award in Chemistry, 2002
National Science Foundation-CAREER Award, 2000
NIH Post-Doctoral Fellow, 1997
Peter Veatch Fellow, 1995
Sigma Xi Fellow, 1990
Fulbright Fellow, 1990
Presidents Undergraduate Fellow, 1989
研究领域
Our research focuses on catalytic reaction development with attendant applications in natural product synthesis. A central theme involves the identification of new reactivity patterns, the evolution of related catalytic processes and, ultimately, the development of new synthetic strategies. Specific areas of research include: (a) hydrogen-mediated C-C bond formation, (b) nucleophilic catalysis via phosphine conjugate addition, (c) catalytic tandem conjugate addition-electrophilic trapping, and (d) metal-catalyzed [2+2]cycloaddition.
H2-Mediated C-C Bond Formation: The formation of carbon-carbon (C-C) bonds is of fundamental significance. Research in the Krische laboratory demonstrates that C-C bond formation may be achieved under the conditions of catalytic hydrogenation and transfer hydrogenation. These studies represent the first systematic efforts to exploit hydrogenation in C-C couplings beyond hydroformylation and define a departure from the use of preformed organometallic reagents in carbonyl addition.
The Krische group reports that diverse π-unsaturated reactants reductively couple to carbonyl compounds and imines under hydrogenation conditions, thereby providing a byproduct-free alternative to stoichiometrically preformed organometallic reagents in a range of classical C=X (X = O, NR) addition processes. In such transformations, one simply hydrogenates two molecules in the presence of one another to form a single more complex product. This work evokes the question of whether all processes employing stoichiometric metallic reagents can be conducted catalytically under hydrogenative conditions.
More recently, by exploiting alcohols as both hydrogen donors and aldehyde precursors, byproduct-free carbonyl addition is achieved from the alcohol oxidation level. Such alcohol-unsaturate C-C couplings circumvent the redox manipulations often required to convert alcohols to aldehydes, and again bypass the barriers imposed by the use of stoichiometrically preformed organometallics. As chemical industry shifts from petrochemicals to renewable feedstocks, such direct byproduct-free couplings of alcohols are anticipated to find broad use.
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Liang, T.; Zhang, W.; Krische M. J. “Iridium Catalyzed C-C Coupling of a Simple Propargyl Ether with Primary Alcohols: Enantioselective Homoaldol Addition via Redox-Triggered (Z)-Siloxyallylation,” J. Am. Chem. Soc. 137 (2015): 16024.
Kasun, Z. A.; Gao, X.; Lipinski, R. M.; Krische, M. J.“Direct Generation of Triketide Stereopolyads via Merged Redox-Construction Events: Total Synthesis of (+)-Zincophorin Methyl Ester,” J. Am. Chem. Soc. 137 (2015): 8900.
Gao, X.; Woo, S. K.; Krische, M. J. “Total Synthesis of 6-Deoxyerythronolide B via C-C Bond-Forming Transfer Hydrogenation,” J. Am. Chem. Soc. 135 (2013): 4223.
Dechert-Schmitt, A.-M. R.; Schmitt, D. C.; Krische, M. J. “Site-Selective Primary Alcohol Dehydrogenation Enables Protecting Group-Free Diastereoselective C-C Coupling of 1,3-Glycols and Allyl Acetate,” Angew. Chem. Int. Ed. 52 (2013): 3195.
Zbieg, J. R.; Yamaguchi, E.; McInturff, E. L.; Krische, M. J. “Enantioselective C-H Crotylation of Primary Alcohols via Hydrohydroxyalkylation of Butadiene,” Science 336 (2012): 324.
Lu, Y.; Woo, S. K.; Krische, M. J. “Total Synthesis of Bryostatin 7 via C-C Bond Forming Hydrogenation,” J. Am. Chem. Soc. 132 (2011): 13876.