个人简介
工作经历
2020.07—至今 四川大学,特聘副研究员
2018.07—2020.06 北京大学,博新博士后
教育经历
2013.09--2018.07 北京大学, 博士
2009.09--2013.07 四川大学, 学士
科研项目
国家自然科学基金项目青年基金,2022.01-2024.12
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
On the hydrostatic approximation of the MHD equations in a thin strip (with C. Wang),
SIAM J. Math. Anal. 54 (2022), no. 1, 1241–1269.
On the global small solution of 2-D Prandtl system with initial data in the optimal Gevrey class (with C. Wang and P. Zhang), arxiv 2103.00681 (2021).
Gevrey stability of hydrostatic approximate for the Navier-Stokes equations in a thin domain (with C. Wang and Z. Zhang), Nonlinearity 34 (2021), no. 10, 7185–7226.
Global well-posedness of the 2-D magnetic Prandtl model in the Prandtl-Hartmann regime (with D. Chen, S. Ren and Z. Zhang), Asymptot. Anal. 120 (2020), no. 3-4, 373–393.
Zero-viscosity limit of the Navier-Stokes equations in a simply-connected bounded domain under the analytic setting (with C. Wang), J. Math. Fluid Mech. 22 (2020), no. 1, Paper No. 8, 58 pp.
Local well-posedness of the vacuum free boundary of 3-D compressible Navier-Stokes equations (with G. Gui and C. Wang), Calc. Var. Partial Differential Equations 58 (2019), no. 5, Paper No. 166, 35 pp.
Well-posedness of the linearized Prandtl equation around a non-monotonic shear flow (with D. Chen and Z. Zhang), Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), no. 4, 1119–1142.
Well-posedness of the Prandtl equation with monotonicity in Sobolev spaces (with D. Chen and Z. Zhang), J. Differential Equations 264 (2018), no. 9, 5870–5893.
Zero-viscosity limit of the Navier-Stokes equations in the analytic setting (with C. Wang and Z. Zhang), Arch. Ration. Mech. Anal. 224 (2017), no. 2, 555–595.