当前位置: X-MOL首页全球导师 国内导师 › 范战西

个人简介

Dr. Zhanxi FAN received his B.S. degree (2010) in Chemistry from Jilin University (China), where he investigated the composites of conjugated polymers and quantum dots under the guidance of Prof. Bai Yang and Prof. Hao Zhang. Then he completed his Ph.D. (2015) in Materials Chemistry from Nanyang Technological University (Singapore) under the supervision of Prof. Hua Zhang. During the Ph.D. study, he developed new strategies for the crystal phase-controlled synthesis and applications of noble metal nanomaterials. Afterwards, he spent a few years as Project Officer/Research Fellow/Postdoc Fellow in Nanyang Technological University with Prof. Hua Zhang and Lawrence Berkeley National Laboratory (USA) with Prof. Haimei Zheng. In November 2019, he joined City University of Hong Kong as an Assistant Professor. His research interest lies in the fields of materials chemistry, nanoscience, catalysis, and energy conversion. Currently, he mainly focuses on the controlled synthesis of novel low-dimensional metal-based nanomaterials and their potential applications in catalysis, clean energy, environmental remediation, etc. Until April 2024, he has published 115 SCI papers (93 with IF > 10) with a total citation of over 17600 and H index of 61. Based on these works, he has been rated/honored as a “Highly Cited Researcher” (Top 1‰, World-wide) by Web of Science for consecutive 6 years from 2018 to 2023, a “Rising Star” by both Advanced Materials and Small in 2022, a “Top 2% of the World’s Most Cited Scholar” by Stanford University for consecutive 4 years from 2020 to 2023, a “Vebleo Fellow” by Vebleo in 2021, an “Emerging Investigator” by J. Mater. Chem. A in 2021, and is also a recipient of multiple awards including the “Young Scientist Award” from European Materials Research Society (E-MRS) in 2015, and “MSE Doctorate Research Excellence Award” from Nanyang Technological University in 2016.

研究领域

Materials chemistry Nanoscience Metal and metal-based nanomaterials Crystal phase control Catalysis Energy conversion

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

Yunhao Wang, et al., Zhanxi Fan*, Atomic coordination environment engineering of bimetallic alloy nanostructures for efficient ammonia electrosynthesis from nitrate, PNAS 120, e2306461120 (2023). Jingwen Zhou, et al., Zhanxi Fan*, Constructing molecule-metal relay catalysis over heterophase metallene for high-performance rechargeable zinc-nitrate/ethanol batteries, PNAS 120, e2311149120 (2023). Jingwen Zhou, et al., Zhanxi Fan*, Boosting the reaction kinetics in aprotic lithium-carbon dioxide batteries with unconventional phase metal nanomaterials, PNAS 119, e2204666119 (2022). Fu Liu & Zhanxi Fan*, Defect engineering of two-dimensional materials for advanced energy conversion and storage, Chem. Soc. Rev. 52, 1723–1772 (2023). Yunhao Wang, et al., Zhanxi Fan*, Controlled synthesis of unconventional phase alloy nanobranches for highly selective electrocatalytic nitrite reduction to ammonia, Angew. Chem. Int. Ed. 63, e202402841 (2024). Yunhao Wang, et al., Zhanxi Fan*, Crystal phase engineering of ultrathin alloy nanostructures for highly efficient electroreduction of nitrate to ammonia, Adv. Mater. 36, 2313548 (2024). Yuecheng Xiong, et al., Zhanxi Fan*, Electrochemical nitrate reduction: ammonia synthesis and the beyond, Adv. Mater. 36, 202304021 (2024). Yangbo Ma, et al., Zhanxi Fan*, Confined growth of silver-copper Janus nanostructures with {100} facets for highly selective tandem electrocatalytic carbon dioxide reduction, Adv. Mater. 34, 2110607 (2022). (Rising Stars series) Yuecheng Xiong, et al., Zhanxi Fan*, Electrochemical lithium extraction from aqueous sources, Matter 5, 1760–1791 (2022). Yangbo Ma, et al., Zhanxi Fan*, Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction, Matter 4, 888–926 (2021). Xichen Zhou, et al., Zhanxi Fan* & Hua Zhang*, Preparation of Au@Pd core–shell nanorods with fcc-2H-fcc heterophase for highly efficient electrocatalytic alcohol oxidation, J. Am. Chem. Soc. 144, 547–555 (2022). Shiyao Lu, et al., Zhanxi Fan* & Hua Zhang*, Crystal phase control of gold nanomaterials by wet-chemical synthesis, Acc. Chem. Res. 53, 2106–2118 (2020). Juan Wang, et al., Zhanxi Fan*, Coordination environment engineering of metal centers in coordination polymers for selective carbon dioxide electroreduction toward multi-carbon products, ACS Nano 18, 7192–7203 (2024). Liang Guo, et al., Zhanxi Fan*, Electronic Structure Design of Transition Metal-Based Catalysts for Electrochemical Carbon Dioxide Reduction, ACS Nano, 18, 9823–9851 (2024). Pengyi Lu, et al., Zhanxi Fan*, Steering the selectivity of carbon dioxide electroreduction from single-carbon to multi-carbon products on metal-organic frameworks via facet engineering, Nano Lett. 24, 1553–1562 (2024). Jinli Yu, et al., Zhanxi Fan*, Enhancing the electrochemical reduction of carbon dioxide to multi-carbon products on copper nanosheet arrays via cation-catalyst interaction, Cell Rep. Phys. Sci. 4, 101366 (2023). Jinli Yu, et al., Zhanxi Fan*, Acidic conditions for efficient carbon dioxide electroreduction in flow and MEA cells, Chem Catal. 3, 100670 (2023). Jinli Yu, et al., Zhanxi Fan*, Interfacial electric field effect on electrochemical carbon dioxide reduction reaction, Chem Catal. 2, 2229–2252 (2022). Yunhao Wang, et al., Zhanxi Fan*, Decreasing the overpotential of aprotic Li-CO2 batteries with the in-plane alloy structure in ultrathin two-dimensional Ru-based nanosheets, Adv. Funct. Mater. 32, 2202737 (2022) Jinli Yu, et al., Zhanxi Fan*, Recent progresses in electrochemical CO2 reduction on Cu-based catalysts towards multi-carbon products, Adv. Funct. Mater. 31, 2102151 (2021). Huangxu Li, et al., Zhanxi Fan* & Hua Zhang*, Phase engineering of nanomaterials for clean energy and catalytic applications, Adv. Energy Mater. 10, 2002019 (2020). Zhanxi Fan, et al., Haimei Zheng* & Hua Zhang*, Heterophase fcc-2H-fcc gold nanorods, Nat. Commun. 11, 3293 (2020). Ye Chen #, Zhanxi Fan #, et al., Hua Zhang*, Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: a crystal phase-dependent study, J. Am. Chem. Soc. 142, 12760–12766 (2020). Ye Chen #, Zhuangchai Lai #, Xiao Zhang #, Zhanxi Fan #, Qiyuan He #, Chaoliang Tan & Hua Zhang*, Phase engineering of nanomaterials, Nat. Rev. Chem. 4, 243-256 (2020). Zhanxi Fan, et al., Hua Zhang*, Facile synthesis of gold nanomaterials with unusual crystal structures, Nat. Protoc. 12, 2367-2378 (2017). Zhanxi Fan, et al., Peidong Yang* & Hua Zhang*, Stabilization of 4H hexagonal phase in gold nanoribbons, Nat. Commun. 6, 7684 (2015). Zhanxi Fan, et al., Hua Zhang*, Surface modification-induced phase transformation of hexagonal close-packed gold square sheets, Nat. Commun. 6, 6571 (2015). ​ Zhanxi Fan & Hua Zhang*, Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials, Chem. Soc. Rev. 45, 63-82 (2016). Zhanxi Fan & Hua Zhang*, Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications, Acc. Chem. Res. 49, 2841-2850 (2016). ​ Zhanxi Fan, et al., Hua Zhang*, Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction, J. Am. Chem. Soc. 138, 1414-1419 (2016). ​ Zhanxi Fan, et al., Hua Zhang*, Synthesis of 4H/fcc-Au@metal sulfide core–shell nanoribbons, J. Am. Chem. Soc. 137, 10910-10913 (2015). Ye Chen ​#, Zhanxi Fan​ #, Zhimin Luo​ #, et al., Hua Zhang*, High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core–shell nanorods for electrocatalytic ethanol oxidation, Adv. Mater. 29, 1701331 (2017). Zhanxi Fan, et al., Hua Zhang*, Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core–shell nanoplates from hexagonal close-packed Au square sheets, Angew. Chem. Int. Ed. 54, 5672-5676 (2015).

推荐链接
down
wechat
bug