近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
专著和教材
1. 专著:作物生长光谱监测. 科学出版社. 2020.(主编)
2. 专著: Hyperspectral remote sensing of leaf nitrogen concentration in cereal crops. Cheng, T., Zhu, Y., Li, D., Yao, X, & Zhou, K. (2018). In P. S. Thenkabail, J. Lyon, & A. Huete (Eds.), Hyperspectral Remote Sensing of Vegetation, Second Edition, Four Volume Set, Volume 2. Boca Raton, FL: CRC Press.
3. 专著:Estimating leaf nitrogen concentration of cereal crops with hyperspectral data. In: Prasad ST, John GL, Alfredo H. (eds.) Hyperspectral Remote Sensing of Vegetation. CRC Press, FL, USA. 2011.187-206.(参编)
4. 专著:物联网与食品质量安全. 科学出版社. 2014(参编)。
5. 专著:数字农作技术. 科学出版社. 2008.(参编)
6. 教材:农业信息化技术导论.中国农业科学技术出版社. 2009.(参编)
主要论文(仅列出第一作者和通讯作者文章)
1. Khan, I.H., Liu, H., Li, W., Cao, A., Wang, X., Liu, H., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Yao, X. Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat. Remote Sens. 2021, 13, 3612. https://doi.org/10.3390/rs13183612
2. Jia, M., Colombo, R., Rossini, M., Celesti, M., Zhu, J., Cogliati, S., Cheng, T., Tian, Y., Zhu, Y., Cao, W., Yao, X*. Remote estimation of nitrogen content and photosynthetic nitrogen use efficiency in wheat leaf using sun-induced chlorophyll fluorescence at the leaf and canopy scales. European Journal of Agronomy. 2021.12:14.
3. Jiang, J.; Zhu, J.; Wang, X.; Cheng, T.; Tian, Y.; Zhu, Y.; Cao, W.; Yao, X. Estimating the Leaf Nitrogen Content with a New Feature Extracted from the Ultra-High Spectral and Spatial Resolution Images in Wheat. Remote Sens. 2021, 13, 739. https://doi.org/10.3390/rs13040739
4. Fang Y, Qiu X, Guo T, Wang Y, Cheng T, Zhu Y, Chen Q, Cao W, Yao X*, Niu Q, Hu Y, Gui L. An automatic method for counting wheat tiller number in the field with terrestrial LiDAR. Plant Methods. 2020, 16(1): 132.
5. Zhou M, Ma X, Wang K, Cheng T, Tian Y, Wang J, Zhu Y, Hu Y, Niu Q, Gui L, Yue C, Yao X*. Detection of phenology using an improved shape model on time-series vegetation index in wheat. Computers and Electronics in Agriculture. 2020, 173: 105398
6. Jia M, Li D, Colombo R, Wang Y, Wang X, Cheng T, Zhu Y, Yao X*, Xu C, Ouer G, Li H, Zhang C. Quantifying chlorophyll fluorescence parameters from hyperspectral reflectance at the leaf scale under various nitrogen treatment regimes in winter wheat. Remote Sensing. 2019, 11: 2838.
7. Jia M, Li W, Wang K, Zhou C, Cheng T, Tian Y, Zhu Y, Cao W, Yao X*. A newly developed method to extract the optimal hyperspectral feature for monitoring leaf biomass in wheat. Computers and Electronics in Agriculture. 2019, 165: 104942.
8. Li W, Jiang J, Guo T, Zhou M, Tang Y, Wang Y, Zhang Y, Cheng T, Zhu Y, Cao W, Yao X*. Generating Red-Edge images at 3 M spatial resolution by fusing Sentinel-2 and Planet satellite products. Remote Sensing. 2019, 11(12):1422.
9. Jiang J, Cai W, Zheng H, Cheng T, Tian Y, Zhu Y, Ehsani R, Hu Y, Niu Q, Gui L, Yao X*. Using digital cameras on an unmanned aerial vehicle to derive optimum color vegetation indices for leaf nitrogen concentration monitoring in winter wheat. Remote Sensing. 2019, 11: 2667.
10. Jiang J, Zheng H, Ji X, Cheng T, Tian Y, Zhu Y, Cao W, Ehsani R, Yao X*. Analysis and evaluation of the image preprocessing process of a six-band multispectral camera mounted on an unmanned aerial vehicle for winter wheat monitoring. Sensors. 2019, 19, 747.
11. Guo T, Fang Y, Cheng T, Tian Y, Zhu Y, Chen Q, Qiu X, Yao X*. Detection of wheat height using optimized multi-scan mode of LiDAR during the entire growth stages. Computers and Electronics in Agriculture. 2019, 165: 104959.
12. Cao Z, Yao X, Liu H, Liu B, Cheng T, Tian Y, Cao W, Zhu Y*. Comparison of the abilities of vegetation indices and photosynthetic parameters to detect heat stress in wheat. Agricultural and Forest Meteorology. 2019. 65:121-136.
13. Zheng H, Li W, Jiang J, Liu Y, Cheng T, Tian Y, Zhu Y, Cao W, Zhang Y, Yao X *. A comparative assessment of different modeling algorithms for estimating leaf nitrogen content in winter wheat using multispectral images from an unmanned aerial vehicle. Remote Sensing. 2018. 10, 2026.
14. Jia M, Zhu J, Ma C, Alonso L, Li D, Cheng T, Tian Y, Zhu Y, Yao X*, Cao W*. Difference and potential of the upward and downward sun-induced chlorophyll fluorescence on detecting leaf nitrogen concentration in wheat. Remote Sensing. 2018, 10(8):1315.
15. Yao X, Si HY, Cheng T, Liu Y, Jia M, Tian YC, Chen CY, Liu SY, Chen Q, Zhu Y*. Spectroscopic estimation of leaf dry weight per ground area using vegetation indices and continuous wavelet analysis in wheat. Frontiers in Plant Science. 2018.01,360
16. Yao X, Wang N, Liu Y, Cheng T, Tian YC,Chen Q , Zhu Y. Accurate Estimation of LAI with Multispectral Imagery on Unmanned Aerial Vehicle (UAV) in Wheat. Remote sensing, 2017,9,1304
17. Cao Z, Cheng T, Ma X, Tian Y, Zhu Y, Yao X*, Chen Q, Liu S, Guo Z, Zhen Q. A new three-band spectral index for mitigating the saturation in the estimation of leaf area index in wheat. International Journal of Remote Sensing. 2017, 38(13): 3865-3885.
18. Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian YC, Cao WX, Zhu Y. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sensing. 2015.7: 14939-14966.
19. Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian YC, Cao WX, Zhu Y. Evaluation of Six Algorithms to Monitor Wheat Leaf Nitrogen Concentration. Remote Sensing, 2015, 7: 14939-14966.
20. Yao X, Ren H, Cao ZH, Tian YC, Cao WX, Zhu Y, Chen T. Monitoring leaf nitrogen content in wheat with canopy hyperspectrum as influenced by soil background. International Journal of Applied Earth Observation and Geoinformation. 2014. 32 , 114-124
21. Yao X, Jia WQ, Si HY, Guo ZQ, Tian YC, Liu XJ, Cao WX, Zhu Y. Monitoring Leaf Equivalent Water Thickness based on Hyperspectrum in Wheat under Different Water and Nitrogen Treatments. PLOS ONE. 2014. 9(6):1-11
22. Yao X, Ata-Ul-Karim ST, Zhu Y, Tian YC, Liu XJ, Cao WX. Development of critical nitrogen dilution curve in rice based on leaf dry matter. European Journal of Agronomy. 2014. 55: 20- 28. (SCI)
23. Yao X, Zhao B, Tian YC, Liu XJ, Ni J, Cao WX, Zhu Y. Using leaf dry matter to quantify the critical nitrogen dilution curve for winter wheat in eastern China. Field Crops Research. 2014. 159: 33-42. (SCI)
24. Yao X, Zhu Y, Tian YC, Liu XJ, and Cao WX. Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. International Journal of Applied Earth Observation and Geoinformation. 2010.12(2): 89-100. (SCI)
25. Yao X, Feng W, Zhu Y, Tian YC, and Cao WX. A non-destructive and real-time method of monitoring leaf nitrogen status in wheat. New Zealand of Agricultural Research. 2007. 50: 935-942. (SCI)
26. Zhao B, Yao X, Tian YC, Liu XJ, Ata-UI-Karim ST, Ni J, Cao WX, Zhu Y*. New Critical Nitrogen Curve Based on Leaf Area Index for Winter Wheat. Agronomy Journal. 2014. 106(2):379-389. (SCI)
27. Ata-Ul-Karim ST, Yao X, Liu XJ, Cao WX, Zhu Y*.Development of critical nitrogen dilution curve of Japonica rice in Yangtze River Reaches. Field Crops Research. 2013.149:149-158. (SCI)
28. Yao XF, Yao X, Jia WQ, Tian YC, Ni J, Cao WX, Zhu Y*. Comparison and Intercalibration of Vegetation Indices from Different Sensors for Monitoring Plant Nitrogen Uptake in Wheat. Sensors.2013.13(3):3109-3130(SCI)
29. Yao XF, Yao X, Tian YC, Ni J, Cao WX, Zhu Y*. A New Method to Determine Central Wavelength and Optimal Bandwidth for Predicting Plant Nitrogen Uptake in Wheat. Journal of Integrative Agriculture. 2013. 12(5): 101-115(SCI)
30. Wang W, Yao X, Yao XF, Tian YC, Liu XJ, Ni J, Cao WX and Zhu Y. Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Research. 2012. 129: 90-98. (SCI)
31. Wang W, Yao X, Liu XJ, Tian YC, Ni J, Cao WX and Zhu Y*. Common spectral bands and optimum vegetation indices for monitoring leaf nitrogen accumulation in rice and wheat. Journal of Integrative Agriculture. 2012.11(12): 101-108. (SCI)
32. Tian YC, Yao X, Yang J, Cao WX, Hannaway DB, Zhu Y. 2011. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground- and space-based hyperspectral reflectance. Field Crops Research, 120: 299-310. (SCI)
33. Feng W, Yao X, Zhu Y, Tian YC, Cao WX. 2008. Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy. (28): 394-404. (SCI)
34. Feng W, Yao X, Tian YC, Cao WX, and Zhu Y. 2008. Monitoring leaf pigment status with hyperspectral remote sensing in wheat. Australian Journal of Agricultural Research. (59): 748-760. (SCI)
35. Zhu Y, Yao X, Tian YC, Liu XJ, Cao WX. 2008. Analysis of common canopy vegetation indices for indicating leaf nitrogen accumulations in wheat and rice. International Journal of Applied Earth Observation and Geoinformation. (10): 1-10. (SCI)
36. 邱小雷,方圆,郭泰,程涛,朱艳,姚霞*。基于地基LiDAR高度指标的小麦生物量监测研究。农业机械学报,2019,50(10):159-166
37. 姚霞, 王雪, 黄宇, 汤守鹏, 田永超, 朱艳*, 曹卫星. 应用近红外光谱法估测小麦叶片糖氮比. 应用生态学报, 2015, 26(8): 2371-2378.
38. 姚霞 ,刘小军, 田永超, 曹卫星, 朱艳*, 张羽. 基于星载通道光谱指数与小麦冠层叶片氮素营养指标的定量关系. 应用生态学报, 2013, 24(2): 431-437.
39. 姚霞,田永超,倪军,张玉森,曹卫星,朱艳.水稻叶片色素含量近红外光谱估测模型研究.分析化学. 2012. 40(4). 589-595. (SCI)
40. 姚霞,刘小军,王薇,倪军,曹卫星,朱艳.小麦氮素无损监测仪敏感波长的最佳波段宽度研究.农业机械学报.2011,42(2):162-167. (EI)
41. 姚霞,汤守鹏,田永超,曹卫星,朱艳.应用近红外光谱估测小麦叶片氮含量. 植物生态学报. 2011. 35 (8): 844-852.
42. 姚霞,田永超,刘小军,曹卫星,朱艳.不同算法红边位置监测小麦冠层氮素营养指标的比较.中国农业科学.2010,43(13):2661-2667.
43. 姚霞,刘小军,王薇,田永超,曹卫星,朱艳.基于减量精细采样法探究估算小麦叶片氮积累量的最佳归一化光谱指数.应用生态学报.2010,21(12):3175-3182.
44. 姚霞,朱艳,冯伟,田永超,曹卫星.监测小麦叶片氮积累量的新高光谱特征波段及比值植被指数.光谱学与光谱分析.2009,29(8):2191-2195. (SCI/EI)
45. 姚霞,朱艳,田永超,冯伟,曹卫星.小麦叶层氮含量估测的最佳高光谱参数研究.中国农业科学.2009,42(8):2716-2725.
46. 姚霞,吴华兵,朱艳,田永超,周治国,曹卫星.棉花功能叶片色素含量与高光谱参数的相关性研究.棉花学报.2007,19(4):267-272.
47. 冯伟,姚霞,田永超,朱艳,李映雪,曹卫星.基于高光谱遥感的小麦叶片糖氮比监测.中国农业科学.2008,41(6):1630-1639.
48. 冯伟,姚霞,田永超,朱艳,刘小军,曹卫星.小麦籽粒蛋白质含量高光谱预测模型研究.作物学报.2007,33(12):1935-1942.
49. 张玉森,姚霞,田永超,曹卫星,朱艳.应用近红外光谱预测水稻叶片氮含量.植物生态学报.2010,34(6):704-712.