当前位置: X-MOL首页全球导师 国内导师 › 程涛

个人简介

程涛,2006 年于北京大学获硕士学位,2010 年于加拿大阿尔伯塔大学获博士学位, 2011-2013 年在美国加州大学戴维斯分校从事博士后研究,2013 年 12 月作为高 层次引进人才到国家信息农业工程技术中心工作。国际数字地球学会中国国家委员会数字农业专业委员会副主任委员,江苏省 遥感与地理信息系统学会常务理事,中国农业生物技术学会植物表型组学专业委 员会委员。国际期刊 IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing、CABI Agriculture & Bioscience 副主编,ISPRS International Journal of Geo-information 编委。 主持或参加国家重点研发计划、国家自然科学基金、国家自然科学基金创新 群体等项目。近年来以水稻和小麦为主要研究对象,在生长参数光谱监测机理与 方法、作物精细识别、稻瘟病监测等方面取得重要进展,为我国粮食安全生产的 规模化监测、数字化预测与智能化管理等提供有力支撑。以第一或通讯作者在 Remote Sensing of Environment 等期刊发表论文 20 余篇。2014 年入选江苏特聘教 授,2019 年入选南京农业大学“钟山学者计划”学术骨干,先后获得江苏省青年 遥感与地理信息科技奖和中国作物学会青年科技奖。现为 IEEE 高级会员,曾任 IEEE 地球科学与遥感学会南京分会主席(2016-2020)。主讲的研究生全英文课 《农业遥感原理与技术》入选教育部来华留学英语授课品牌课程、江苏高校英语 授课精品课程、南京农业大学优秀研究生课程。 国家发明专利: 1. 程涛、江佳乐、姬旭升、姚霞、田永超、朱艳、曹卫星.一种面向田块尺 度作物生长监测的遥感影像时空融合方法:中国,ZL201811312555.4。 2. 程涛、李栋、姚霞、田永超、朱艳、曹卫星.一种基于连续小波分析的水 稻反射光谱红边位置提取方法:中国, ZL201710205193.8。 3. 朱艳、周凯、程涛、曹卫星、姚霞、田永超.一种基于近地面高光谱影像 的水稻阴阳叶穗识别方法:中国,ZL201611020653.1。 4. 姚霞、朱艳、程涛、司海洋、田永超、马吉锋、张羽、邱小雷、王雪、曹 卫星.一种基于连续小波分析建立小麦叶干重定量模型的方法:中国, ZL201611116173.5。 5. 朱艳、郑恒彪、程涛、姚霞、田永超、曹卫星.一种基于无人机多光谱影 像的水稻地上部生物量估测方法:中国,ZL201811312158.7。 四、科研项目 1. 科技部,国家重点研发计划项目,2016YFD0300600,粮食作物生长监测 诊断与精确栽培技术,2016-01至2020-12,6000万元,在研,主持 2. 国家自然科学基金委员会,面上项目,41871259,基于近距离成像高光谱 的水稻叶瘟病早期探测机理与方法研究,2019-01至2022-12,72万元,在 研,主持 3. 国家自然科学基金委员会,面上项目,31470084,基于小波分析的作物冠 层结构与生理生化参数光谱响应分解研究,2015-01至2016-12,30万元, 已结题,主持 4. 自然资源部,委托研究项目,高光谱卫星遥感在耕地生产力监测与评价中 的拓展应用,2019-11至2020-11,45万元,在研,主持 5. 国家自然科学基金委员会,创新研究群体项目,32021004,粮食作物生产 力监测预测机理与方法,2021-01至2025-12,1000万元,在研,参加 6. 挪威驻华大使馆,中国-挪威国际合作项目子课题,减少环境影响和保障 可持续食品安全和粮食安全的创新技术合作研究,2015-02至2017-06,34.8 万元,已结题,主持 7. 南京农业大学,中央高校基本科研业务费项目,KYRC201401,基于小波 分析法的稻麦干物质遥感估测研究,2014-01至2016-12,25万元,已结题, 主持 8. 南京农业大学,南京农业大学-塔里木大学联合项目,KYLH201603,基于 高光谱的南疆灰枣叶片水分状况监测机理研究,2016-01至2018-12,30万 元,已结题,主持 奖励 1. 农学院英才优秀教师奖和突出贡献奖,2020 年 2. 第三届中国作物学会青年科技奖,2019 年 3. 第四届江苏省青年遥感与地理信息科技奖,2018 年 4. 农学院优秀教师,2017 年 5. 农学院青年授课比赛一等奖,2016 年

研究领域

作物生长光谱监测、作物表型信息高通量获取、遥感大数据与作物制图、天空地一体化集成监测预测 等

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

代表性论文列表 (*表示通讯作者): 1. Tian, L., Xue, B., Wang, Z., Li, D., Yao, X., Cao, Q., Zhu, Y., Cao, W., & Cheng, T.* (2021). Spectroscopic detection of rice leaf blast infection from asymptomatic to mild stages with integrated machine learning and feature selection. Remote Sensing of Environment, 257, 112350. 2. Yan, Y., Zhang, X., Li, D., Zheng, H., Yao, X., Zhu, Y., Cao, W., & Cheng, T*. (2021). Laboratory shortwave infrared reflectance spectroscopy for estimating grain protein content in rice and wheat. International Journal of Remote Sensing, 42, 4467-4492. 3. Cheng, T., Ji, X., Yang, G., Zheng, H., Ma, J., Yao, X., Zhu, Y., & Cao, W.* (2020). DESTIN: A new method for delineating the boundaries of crop fields by fusing spatial and temporal information from WorldView and Planet satellite imagery. Computers and Electronics in Agriculture, 178, 105787. 4. Li, D., Chen, J.M., Zhang, X., Yan, Y., Zhu, J., Zheng, H., Zhou, K., Yao, X., Tian, Y., Zhu, Y., Cheng, T.*, & Cao, W.* (2020). Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time. Remote Sensing of Environment, 248, 111985. 5. Li, P., Zhang, X., Wang, W., Zheng, H., Yao, X., Tian, Y., Zhu, Y., Cao, W., Chen, Q., & Cheng, T.* (2020). Estimating aboveground and organ biomass of plant canopies across the entire season of rice growth with terrestrial laser scanning. International Journal of Applied Earth Observation and Geoinformation, 91, 102132. 6. Jiang, J., Zhang, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T.* (2020). HISTIF: A new spatiotemporal image fusion method for high-resolution monitoring of crops at the subfield level. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4607-4626. 7. Alebele, Y., Zhang, X., Wang, W., Yang, G., Yao, X., Zheng, H., Zhu, Y., Cao, W., & Cheng, T.* (2020). Estimation of canopy biomass components in paddy rice from combined optical and SAR data using multi-target Gaussian regressor stacking. Remote Sensing, 12, 2564. 8. Li, D., Tian, L., Wan, Z., Jia, M., Yao, X., Tian, Y., Zhu, Y., Cao, W.*, & Cheng, T.* (2019). Assessment of unified models for estimating leaf chlorophyll content across directional-hemispherical reflectance and bidirectional reflectance spectra. Remote Sensing of Environment, 111240. 9. Lu, N., Zhou, J., Han, Z., Li, D., Cao, Q., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T.* (2019). Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system. Plant Methods, 15:17. 10. 姬旭升,李旭,万泽福,姚霞,朱艳,程涛*. (2019). 基于高空间分辨率 卫星影像的新疆阿拉尔市棉花与枣树分类. 中国农业科学, 52, 997-1008. 11. Li, D., Cheng, T.*, Jia, M., Zhou, K., Lu, N., Yao, X., Tian, Y., Zhu, Y., & Cao, W. (2018). PROCWT: Coupling PROSPECT with continuous wavelet transform to improve the retrieval of foliar chemistry from leaf bidirectional reflectance spectra. Remote Sensing of Environment, 206, 1-14. 12. Li, D., Wang, X., Zheng, H., Zhou, K., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T.* (2018). Estimation of area- and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis. Plant Methods, 14, 76. 13. Li, D., Cheng, T.*, Zhou, K., Zheng, H., Yao, X., Tian, Y., Zhu, Y., & Cao, W. (2017). WREP: A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS Journal of Photogrammetry and Remote Sensing, 129, 103-117. 14. Xu, X., Ji, X., Jiang, J., Yao, X., Tian, Y., Zhu, Y., Cao, W., Cao, Q., Yang, H., Shi, Z., & Cheng, T.* (2018). Evaluation of one-class support vector classification for mapping the paddy rice planting area in Jiangsu Province of China from Landsat 8 OLI imagery. Remote Sensing, 10, 546. 15. Jiang, J., Ji, X., Yao, X., Tian, Y., Zhu, Y., Cao, W., & Cheng, T.* (2018). Evaluation of three techniques for correcting the spatial scaling bias of leaf area index. Remote Sensing, 10, 221. 16. Cheng, T., Song, R., Li, D., Zhou, K., Zheng, H., Yao, X., Tian, Y., Cao, W., & Zhu, Y. (2017). Spectroscopic estimation of biomass in canopy components of paddy rice using dry matter and chlorophyll indices. Remote Sensing, 9, 319. 17. Zhou, K., Deng, X., Yao, X., Tian, Y., Cao, W., Zhu, Y.*, Ustin, S.L., & Cheng, T.* (2017). Assessing the spectral properties of sunlit and shaded components in rice canopies with near-ground imaging spectroscopy data. Sensors, 17, 578. 18. Cheng, T., Yang, Z., Inoue, Y., Zhu, Y., & Cao, W. (2016). Preface: recent advances in remote sensing for crop growth monitoring. Remote Sensing, 8, 116. 19. Cheng, T., Riaño, D. & Ustin, S. L. (2014). Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sensing of Environment, 143, 39-53. 20. Cheng, T., Rivard, B., Sánchez-Azofeifa, G. A., Féret, J. B., Jacquemoud, S. & Ustin, S. L. (2014). Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 28-38. 21. Cheng, T., Riaño, D., Koltunov, A., Whiting, M. L., Ustin, S. L. & Rodriguez, J. Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator (MASTER) data. (2013). Remote Sensing of Environment, 132, 1-12. 22. Cheng, T., Rivard, B., Sánchez-Azofeifa, G. A., Féret, J. B., Jacquemoud, S. & Ustin, S. L. (2012). Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. Journal of Plant Physiology, 169, 1134-1142. 23. Cheng, T., Rivard, B., & Sánchez-Azofeifa, G. A. (2011). Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sensing of Environment, 115, 659-670. 24. Cheng, T., Rivard, B., Sánchez-Azofeifa, G. A., Feng, J. & Calvo-Polanco, M. (2010). Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 114, 899-910. 合编著作 1. 曹卫星,程涛,朱艳,姚霞,等. 2020. 作物生长光谱监测. 北京: 科学出 版社. 2. Cheng, T., Zhu, Y., Li, D., Yao, X, & Zhou, K. (2018). Hyperspectral remote sensing of leaf nitrogen concentration in cereal crops. In P. S. Thenkabail, J. Lyon, & A. Huete (Eds.), Hyperspectral Remote Sensing of Vegetation, Second Edition, Four Volume Set, Volume 2. Boca Raton, FL: CRC Press.

推荐链接
down
wechat
bug