当前位置: X-MOL首页全球导师 国内导师 › 冯龙

个人简介

教育经历 2005年9月---2009年6月 南开大学 数学试点班 2009年9月---2014年6月 南开大学 硕博连读 (导师:王兆军教授) 2015年1月---2016年1月 佛罗里达大学 博士后 (导师:邱培华教授) 工作经历 2014年7月--2019年6月 东北师范大学 讲师 2019年7月--2021年7月 东北师范大学 副教授 2021年12月--至今 南开大学 副教授、特聘研究员 冯龙,男,湖北省仙桃市人,1988年8月出生。现任南开大学统计与数据科学学院副教授、特聘研究员。冯龙于2005 年9月毕业于南开大学数学科学学院陈省身数学试点班,获理学学士学位,2009年9月保送南开大学数学科学学院攻读概率论与数理统计专业硕士研究生,2011年9月免试转为博士研究生,主要从事质量控制、非参数模型、高维数据分析方面的研究,于2014年6月毕业获理学博士学位,获得南开大学优秀博士论文奖。申请人曾获得2011年教育部学术新人奖,于2012-2014年分别访问香港浸会大学、新加坡国立大学和香港大学,并2015年于美国佛罗里达大学做博士后研究。 在SCI期刊发表论文共29篇,其中第一作者或通讯作者论文26篇,在统计学国际顶尖杂志Journal of American Statistical Association、Biometrika、Annals of Statistics发表论文共4篇、计量经济学顶级期刊Journal of Econometrics、Journal of Business and Economic Statistics各一篇、工业统计学顶尖期刊Technometrics一篇、泛华统计协会会刊Statistica Sinica共4篇。曾主持一项国家自然科学基金青年项目。 科研项目 2016年1月--2018年12月 国家自然科学基金青年项目 超高维数据中若干检验问题的研究 学术访问经历 2012.3-2012.6 香港浸会大学 朱力行教授 2013.8-2013.9 新加坡国立大学 夏应存教授 2014.2-2014.3 香港大学 尹国圣教授 2021.8-2021.11 南方科技大学 陈欣 副教授

研究领域

高维数据分析、计量经济学、图像数据质量控制等

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Feng Long, Zou Changliang and Wang Zhaojun. (2016). Multivariate-sign-based high-dimensional tests for the two-sample location problem, Journal of American Statistical Association. 111, 721-735. 2. Feng Long, Jiang tiefeng, Liu Binghui and Xiong wei. (2021) Max-sum tests for cross-sectional dependence in high-dimensional panel data models. Annals of Statistics. Accepted. 3. Zou Changliang, Peng Liuhua, Feng Long andWang Zhaojun (2014). Multivariate-signs based high-dimensional tests for sphericity. Biometrika. 101(1), 229-236. 4. Zou Changliang, Yin Guosheng, Feng Long and Wang Zhaojun(2014).Nonparametric maximum likelihood approach to multiple change-point problems. Annals of Statistics.42 (3), 970-1002. 5. Feng Long, Lan Wei, Liu binghui and Ma yanyuan. (2021) Testing for alpha in high-dimensional linear factorpricing models with sparse alternatives. Journal of Econometrics.Accepted. 6. Feng Long and Qiu Peihua (2018) Difference detection between two images for image monitoring.Technometrics, 60, 345-359. 7. Feng Long, Liu binghui and Ma yanyuan. (2021) An Inverse Norm Sign Test of Location Parameter for High-Dimensional Data.Journal of Business and Economic Statistics.39 (3), 807-815. 8. Feng Long, Zou Changliang Wang Zhaojun and Zhu Lixing. (2015) Two Sample Behrens-Fisher problem for high-dimensional data. Statistica Sinica. 25, 1297-1312. 9. Feng Long, Wang Zhaojun, Zhang Chunming and Zou Changliang. (2016) Nonparametric testing in regression models with Wilcoxon-type generalized likelihood ratio. Statistica Sinica. 26, 137-155. 10. Feng Long, Zou Changliang Wang Zhaojun and Zhu Lixing (2017) Composite T^2 test for high dimensional data. Statistica Sinica, 27, 1419-1436. 11. Liu binghui,Feng Longand Ma yanyuan. (2021) High-dimensional alpha test of linearfactor pricing models with heavy-tailed distributions. Statistica Sinica. Accepted 其他论文: 1. Feng Long, Zou Changliang, and Wang Zhaojun (2012).local walsh average regression. Journal of Multivariate Analysis. 106(1), 36-48. 2. Feng Long, Zou Changliang, and Wang Zhaojun (2012).Rank-based inference for single-index model Statistics and Probability Letters. 82(3), 535-541. 3. Feng Long, Zou Changliang, Wang Zhaojun and Chen bin (2013). Rank-based score tests for high-dimensional regression coefficients. Electronic Journal of Statistics. 7, 2131-2149. 4. Feng Long, Zou Changliang, Wang Zhaojun, Wei Xianwu and Chen bin. (2015). Robust Spline-Based Variable Selection in Varying Coefficient Model. Metrika. 78 (1), 85-118. 5. Feng Long, Zou Changliang Wang Zhaojun and Zhu Lixing. (2015) Robust comparison of regression curves. Test. 24 (1), 185-204. 6. Feng Longand Sun Fasheng. (2015). A note on the high dimensional two sample test.Statistics and Probability Letters.105, 29-36. 7. Feng Long and Sun Fasheng. (2016). Spatial sign based high dimensional location test. Electronic Journal of Statistics.10, 2420-2434. 8. Feng Long and Liu binhui (2017). High dimensional rank tests for sphericity. Journal of Multivariate Analysis 155, 217-233. 9. Lan wei, Feng Long and Luo ronghua (2018). Testing high dimensional linear asset pricing model. Journal of Financial Econometrics 16 (2), 191-210. 10. Feng Long, Ren haojieand Zou Changliang (2020). A setwise EWMA scheme for monitoring high-dimensional datastreams.Random Matrices: Theory and Applications. 9, 2050004. 11. Feng Long, Zhang xiaoxu and Liu binghui. (2020) A high-dimensional spatial rank test for two-sample location problems. Computational Statistics and Data Analysis. 144,106889. 12. Feng Long, Zhang xiaoxu and Liu binghui. (2020) Multivariate tests of independence and their application in correlation analysis between financial markets. Journal of Multivariate Analysis.179, 104652. 13. Feng Long, Ding Yanling and Liu Binghui. (2020) Rank-based tests for cross-sectional dependence in large (N,T) fixed effects panel data models. Oxford Bulletin of Economics and Statistics. 82, 1198-1216. 14. Feng Long, Zhao Ping, Ding Yanling, Liu Binghui (2021) Rank-based tests of cross-sectional dependence in large(N; T) panel data models. Computational Statistics and Data Analysis. 153, 107070. 15. Wang hongfei, Feng Long* and Liu Binghui, Zhou Qin.(2021) A class of weighted spatial sign tests for high-dimensional directional data. Electronic Journal of Statistics,15(1),3249-3286. 16. Ding Yanling, Liu Binghui, ZhaoPing and Feng Long* (2021) Rank-based test for slope homogeneity in highdimensional panel data models. Metrika. Accepted. 17. Feng Long, Zhang xiaoxu and Liu binghui (2021) A high-dimensional spatial rank test for two sample covariance matrices. Statistical Theory and Related Fields. Accepted 18. Zhang Xiaoxu, Zhao Ping and Feng Long*. (2021) Robust sphericity test in the panel data model. Statistics and Probability Letters.Accepted

推荐链接
down
wechat
bug