个人简介
南京航空航天大学计算机科学与技术学院副教授,2018年博士毕业于南京航空航天大学师从张道强教授,2019年至2021年在美国印第安纳大学医学院从事博士后研究,师从Kun Huang教授。主要研究方向为机器学习以及医学图像处理,目前以第一或共同第一作者发表论文10余篇,相关工作发表在Nature Communication, IEEE TMI, MedIA, Bioinformatics, IEEE TCBB等国际一流期刊。 荣获医学图像处理国际顶级会议MICCAI 2019 青年科学家奖,入选2020年度南京航空航天大学长空之星。
教育经历
2014.92018.12南京航空航天大学软件工程工学博士学位
2019.12021.1美国印第安纳大学博士后
2012.112014.6南京安讯科技有限责任公司
2012.62012.11南京烽火星空通信发展有限公司
工作经历
2019.12021.1美国印第安纳大学博士后
2012.112014.6南京安讯科技有限责任公司
2012.62012.11南京烽火星空通信发展有限公司
科研项目
面向癌症预后预测的基因影像学分析方法研究
基于病理图像的癌症预后预测研究
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1)Shao, W., Han, Z., Cheng, J., Cheng, L., Wang, T., Sun, L., Lu, Z., Zhang, J., Zhang, D. and Huang, K*.,. Integrative analysis of pathological images and multi-dimensional genomic data for early-stage cancer prognosis. IEEE Transactions on Medical Imaging, 39(1), 99-110,2020.
2)Shao, W., Wang, T., Huang, Z., Han, Z., Zhang, J. and Huang, K., Weakly supervised deep ordinal cox model for survival prediction from whole-slide pathological images. IEEE Transactions on Medical Imaging, 40(12), 3739-3747,2021
3) Shao, W., Wang, T., Sun, L., Dong, T., Han, Z., Huang, Z., Zhang, J., Zhang, D. and Huang, K. Multi-task multi-modal learning for joint diagnosis and prognosis of human cancers. Medical Image Analysis, 65:101795, 2020
4)Wang, T*., Shao, W*., Huang, Z., Tang, H., Zhang, J., Ding, Z. and Huang, K. MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification. Nature Communications, 12(1), pp.1-13,2021 (共同第一作者)
5)Shao, W., Huang, S.J., Liu, M. and Zhang, D. Querying Representative and Informative Super-pixels for Filament Segmentation in Bioimages. IEEE Transactions on Computational Biology and Bioinformatics, 17(4), 1394-1405, 2019
6) Shao, W., Liu, M. and Zhang, D*., Human cell structure-driven model construction for predicting protein subcellular location from biological images. Bioinformatics, 32(1), pp.114-121, 2016
7) Shao, W., Liu, M., Xu, Y.Y., Shen, H.B. and Zhang, D.*. An organelle correlation-guided feature selection approach for classifying multi-label subcellular bio-images. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 15(3), pp.828-838, 2017
部分会议论文:
1)Shao, W., Wang, T., Huang, Z., Cheng, J., Han, Z., Zhang, D. and Huang, K*. Diagnosis-Guided Multi-modal Feature Selection for Prognosis Prediction of Lung Squamous Cell Carcinoma. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2019), 113-121. 2019.(荣获医学图像分析国际顶级会议MICCAI 2019青年科学家奖,国内唯一,全球共5人)
2) Shao, W., Cheng, J., Sun, L., Han, Z., Feng, Q., Zhang, D. and Huang, K*., Ordinal multi-modal feature selection for survival analysis of early-stage renal cancer. In International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2018), 648-656, 2018.
3) Liu, Z, Shao W, Zhang J, Zhang M, and Huang K. Transfer Learning via Optimal Transportation for Integrative Cancer Patient Stratification. In International Joint Conference on Artificial Intelligence (IJCAI 2021), 221-227, 2021
[1]邵伟,,.Integrative Analysis of Pathological Images and Multi-Dimensional Genomic Data for Early-Stage Cancer Prognosis.IEEE Transaction on Medical Imaging,2020