近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Zijing Liu, Wei An, Xiyao Qu, Xuejun Liu, and Hongqiang Lyu, "Portfolio-Based Bayesian Optimization for Airfoil Design, " AIAA Journal, Vol. 59, No. 6 (2021), pp. 1975-1989 doi: doi/abs/10.2514/1.J059812.
2. Wu, Tingfan; Liu Xuejun*; An, Wei; Huang Zenghui; Lyu, Hongqiang. A Mesh Optimization Method Using Machine Learning Technique and Variational Mesh Adaptation, Chinese Journal of Aeronautics, 2021, In press, https://doi.org/10.1016/j.cja.2021.05.018.
3. H. Wu, X .Liu*, W. An, H. Lyu. A generative deep learning framework for airfoil flow field prediction with sparse data, Chinese Journal of Aeronautics, 2021, In press, https://doi.org/10.1016/j.cja.2021.02.012.
4. 胡伟杰, 黄增辉, 刘学军*,吕宏强, 基于自动核构造高斯过程的导弹气动性能评估, 航空学报, 2021, 42(4):524093.
5. Li, J., Liu, X.* and Zhang, D., Detecting differential transcript usage across multiple conditions for RNA-seq data based on the smoothed LDA model, Frontiers of Computer Science , 2021 15: 153319.
6. Wu, H., Liu, X.*, An, W., Chen, S. and Lyu, H., A deep learning approach for efficiently and accurately evaluating the flow field of supercritical airfoils, Computers and Fluids, 2020 198: 104393.
7. Yu, X. and Liu, X.*, Mapping RNA-seq reads to transcriptomes efficiently based on learning to hash method, Computers in Biology and Medicine, 2020 116: 103539.
8. Sun, L, An, W., Liu, X.* and Lyu, H., On developing data-driven turbulence model for DG solution of RANS, Chinese Journal of Aeronautics, 2019 32:1869-1884.
9. 石险峰, 刘学军, 张礼. PUseqClust: 一种RNA-seq数据聚类分析方法, 软件学报, 2019, 30: 2857-2868.
10. Liu, Z., Liu, X.* and Cai, X. A new hybrid aerodynamic optimization framework based on differential evolution and invasive weed optimization, Chinese Journal of Aeronautics, 2018 31:1437-1448.
11. 王凯莉, 张礼, 刘学军. 融合多平台表达数据的转录组差异表达分析, 计算机学报, 2018, 41: 1195-1210.
12. Zhang, L. and Liu, X., A Comprehensive Review on RNA-seq Data Analysis, Transactions of Nanjing University of Aeronautics and Astronautics, 2016 33:339-361.
13. Zhang, L. and Liu, X., PBSeq: Modeling based-level bias to estimate gene and isoform expression for RNA-seq data, International Journal of Machine Learning and Cybernetics, 2016 doi:10.1007/s13042-016-0497-z.
14. Zhang, L. and Liu, X., A structured sparse regression method for estimating isoform expression level from multi-sample RNA-seq data, Genetics and Molecular Research, 2016 15:gmr7670.
15. Zhang, Li,Liu, Xuejun(*),Chen, Songcan, Detecting differential expression from RNA-seq data with expression measurement uncertainty, Frontiers of Computer Science in China,2015,9(4)
16. Liu, Xuejun,Zhang, Li,Chen, Songcan,Modeling exon-specific bias distribution improves the analysis of RNA-seq data,PLos One,2015,10(10)
17. Liu, Xuejun,Shi, Xinxin,Chen, Chunlin,Zhang, Li,ImprovingRNA-Seq expression estimation by modeling isoform- and exon-specific readsequencing rate,BMC Bioinformatics,2015,16
18. Liu, Xuejun,Zhu, Qinglei,Lu, Hongqiang,Modeling multi-responsesurfaces for airfoil design with multiple output Gaussian process regression,Journal of Aircraft,2014,51(3):740-747
19. Liu, Xuejun,Gao, Zhenzhu,Zhang, Li,Rattray, Magnus,puma 3.0: improved uncertainty propagation methods for gene and transcript expression analysis,BMC Bioinformatics,2013,14
20. Liu, Xuejun,Rattray, Magnus,Including probe-level measurement error in robust mixture clustering of replicated microarray gene expression,Statistical Applications in Genetics and Molecular Biology,2010,9(1):1-24
21. Liu, Xuejun,Lin, Kevin K.,Andersen, Bogi,Rattray, Magnus,Includin g probe-level uncertainty in model-based gene expression clustering,BMC Bioinformatics,2007,8:1-19
22. Liu, Xuejun,Marta Milo,Neil Lawrence,Magnus Rattray,Probe-level measurement error improves accuracy in detecting differential gene expression,Bioinformatics,2006,22:2107-2113
23. Liu, Xuejun,Marta Milo,Neil Lawrence,Magnus Rattray,A tractable probabilistic model for Affymetrix probe-level analysis across multiple chips,Bioinformatics,2005,21:3637-3644
24. Pearson, Richard D.,Liu, Xuejun,Sanguinetti, Guido,Milo, Marta,Lawrence, Neil D.,Rattray, Magnus,puma: a Bioconductor package for propagating uncertainty in microarray analysis,BMC Bioinformatics,2009,10(211):1-10
25. Rattray, Magnus,Liu, Xuejun,Sanguinetti, Guido,Milo, Marta,Lawrence, Neil D.,Propagating uncertainty in microarray data analysis,Briefings in Bioinformatics,2006,7(1):37-47