当前位置: X-MOL首页全球导师 国内导师 › 杨鲤铭

个人简介

国家海外高层次青年人才,江苏省特聘教授。主要从事流体动力学计算方法及其应用研究,包括连续到稀薄流动全流域准确高效计算方法、气体动理学格式、复杂外形及运动边界流固耦合问题和机器学习等。相关研究成果在Journal of Computational Physics,Journal of Fluid Mechanics,Physics of Fluids和Physical Review E等流体力学领域期刊上发表SCI论文70余篇,出版英文专著一部《Lattice Boltzmann and Gas Kinetic Flux Solvers: Theory and Applications》。博士学位论文《基于格子和连续Boltzmann模型的通量求解器研究及其应用》获得2017年度中国力学优秀博士学位论文提名奖。 主讲课程: 本科生课程:《数值计算方法》 研究生课程:《流动控制与数值模拟》 获奖情况: [1] 江苏省特聘教授,2021 [2] 中国力学优秀博士学位论文提名奖,2017 [3] PoF Young Researcher Award,2017 [4] 江苏省优秀硕士学位论文,2013 近三年科研项目: [1] 优秀青年科学基金项目(海外),2022/1-2024/12,主持。 [2] 江苏省特聘教授人才项目,2021/11-2024/11,主持。 [3] 江苏省自然科学基金青年基金,连续到稀薄跨流域高效算法研究及其应用,2021/7-2024/6,主持。 [4] 南京航空航天大学科研启动项目,连续到稀薄流动全流域高效高精度数值算法研究及其应用,2020/12-2022/12,主持。 [5] 国家数值风洞工程,基于DI-IBM和KFS的大变形流-固耦合算法研究,2019/10-2021/6,参与。 [6] 新加坡教育部基金,Development of efficient flow solvers from continuum regime to rarefied regime,2018/12-2021/11,参与。 [7] 国家自然科学基金面上项目,一种基于气体动理学格式的可压缩扩散界面浸入边界法研究及其应用,2018/01-2021/12,参与。 教育经历 2003.92006.6黔东南州民族高中无学位 2006.92010.6南京航空航天大学飞行器设计与工程工学学士学位 2010.92013.3南京航空航天大学流体力学工学硕士学位 2013.92016.12南京航空航天大学流体力学工学博士学位 2014.92016.9新加坡国立大学流体力学无学位 工作经历 2013.42013.8贵州航空发动机研究所 2016.112020.11新加坡国立大学

研究领域

计算流体力学算法与应用 稀薄流数值模拟 气体动理学算法研究 流-固耦合计算与分析 机器学习与流动控制

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

、2022年 [1] Zhang, D., Huang, Q. G., Pan, G., Yang, L. M., & Huang, W. X. (2022). Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming. Journal of Fluid Mechanics, 930. 2021年 [1] Yang, L. M., Shu, C., Chen, Z., Liu, Y. Y., Wang, Y., & Shen, X. (2021). High-order gas kinetic flux solver for simulation of two dimensional incompressible flows. Physics of Fluids, 33(1), 017107. [2] Yang, L. M., Shu, C., Chen, Z., Liu, Y. Y., Wu, J., & Shen, X. (2021). Gas kinetic flux solver based high-order finite-volume method for simulation of two-dimensional compressible flows. Physical Review E, 104(1), 015305. [3] Yang, L. M., Zhao, X., Shu, C., & Du, Y. J. (2021). Parametric reduced order modeling-based discrete velocity method for simulation of steady rarefied flows. Journal of Computational Physics, 430, 110037. [4] Chen, Z., Yang, L. M., Shu, C., Zhao, X., Liu, N. Y., & Liu, Y. Y. (2021). Mixed convection between rotating sphere and concentric cubical enclosure. Physics of Fluids, 33(1), 013605. [5] Liu, Z. J., Yang, L. M., Shu, C., Chen, S. Y., Wan, M. P., Liu, W., & Yuan, Z. Y. (2021). Explicit formulations of G13-based gas kinetic flux solver (G13-GKFS) for simulation of continuum and rarefied flows. Physics of Fluids, 33(3), 037133. [6] Yuan, Z. Y., Yang, L. M., Shu, C., Liu, Z. J., & Liu, W. (2021). A novel gas kinetic flux solver for simulation of continuum and slip flows. International Journal for Numerical Methods in Fluids, 93(9), 2863-2888. [7] Liu, Y. Y., Yang, L. M., Shu, C., & Zhang, H. W. (2021). Efficient high-order radial basis-function-based differential quadrature–finite volume method for incompressible flows on unstructured grids. Physical Review E, 104(4), 045312. [8] Liu, Y. Y., Shu, C., Zhang, H. W., Yang, L. M., & Lee, C. B. (2021). An efficient high-order least square-based finite difference-finite volume method for solution of compressible Navier-Stokes equations on unstructured grids. Computers & Fluids, 222, 104926. [9] Liu, Y. Y., Shu, C., Zhang, H. W., & Yang, L. M. (2021). A high-order implicit least square-based finite difference-finite volume method for incompressible flows on unstructured grids. Physics of Fluids, 33(5), 053601. [10] Lin, X., Wu, J., Zhang, T. W., & Yang, L. M. (2021). Flow-mediated organization of two freely flapping swimmers. Journal of Fluid Mechanics, 912. [11] Zhao, X., Chen, Z., Yang, L. M., Liu, N. Y., & Shu, C. (2021). Efficient boundary condition-enforced immersed boundary method for incompressible flows with moving boundaries. Journal of Computational Physics, 110425. [12] Liu, W., Liu, Y. Y., Yang, L. M., Liu, Z. J., Yuan, Z. Y., Shu, C., & Teo, C. J. (2021). Coupling improved discrete velocity method and G13-based gas kinetic flux solver: A hybrid method and its application for non-equilibrium flows. Physics of Fluids, 33(9), 092007. [13] Chen, Z., Shu, C., Yang, L. M., Zhao, X., & Liu, N. Y. (2021). Phase-field-simplified lattice Boltzmann method for modeling solid-liquid phase change. Physical Review E, 103(2), 023308. [14] Yuan, Z. Y., Shu, C., Liu, Z. J., Yang, L. M., & Liu, W. (2021). Variant of gas kinetic flux solver for flows beyond Navier-Stokes level. Physical Review E, 104(5), 055305. 2020年 [1] Yang, L. M., Wang, Y., Chen, Z., & Shu, C. (2020). Lattice Boltzmann and Gas Kinetic Flux Solvers: Theory and Applications. World Scientific, ISBN: 978-981-122-468-3. [2] Yang, L. M., Shu, C., Chen, Z., & Wu, J. (2020). Three-dimensional lattice Boltzmann flux solver for simulation of fluid-solid conjugate heat transfer problems with curved boundary. Physical Review E, 101(5), 053309. [3] Liu, Y. Y., Yang, L. M., Shu, C., & Zhang, H. W. (2020). Three-dimensional high-order least square-based finite difference-finite volume method on unstructured grids. Physics of Fluids, 32(12), 123604. [4] Sun, Y., Yang, L. M., Shu, C., & Chen, Y. (2020). A diffuse‐interface immersed boundary method for simulation of compressible viscous flows with stationary and moving boundaries. International Journal for Numerical Methods in Fluids, 92(3), 149-168. [5] Sun, Y., Yang, L. M., Shu, C., & Teo, C. J. (2020). A three-dimensional gas-kinetic flux solver for simulation of viscous flows with explicit formulations of conservative variables and numerical flux. Advances in Aerodynamics, 2(1), 1-28. [6] Li, J. W., Wang, J. F., Yang, L. M., & Shu, C. (2020). A hybrid lattice Boltzmann flux solver for integrated hypersonic fluid-thermal-structural analysis. Chinese Journal of Aeronautics, 33(9), 2295-2312. [7] Zhao, X., Wu, C., Chen, Z., Yang, L. M., & Shu, C. (2020). Reduced order modeling-based discrete unified gas kinetic scheme for rarefied gas flows. Physics of Fluids, 32(6), 067108. [8] Liu, Z. J., Shu, C., Chen, S. Y., Yang, L. M., Wan, M. P., & Liu, W. (2020). A novel solver for simulation of flows from continuum regime to rarefied regime at moderate Knudsen number. Journal of Computational Physics, 415, 109548. [9] Chen, Y., Shu, C., Sun, Y., Yang, L. M., & Wang, Y. (2020). A diffuse interface IBM for compressible flows with Neumann boundary condition. International Journal of Modern Physics B, 34(14n16), 2040070. [10] Chen, Z., Shu, C., Wang, Y., & Yang, L. M. (2020). Oblique drop impact on thin film: Splashing dynamics at moderate impingement angles. Physics of Fluids, 32(3), 033303. [11] Zhang, L. Q., Chen, Z., Yang, L. M., & Shu, C. (2020). Double distribution function-based discrete gas kinetic scheme for viscous incompressible and compressible flows. Journal of Computational Physics, 412, 109428. [12] Yang, L. M., Yu, Y., Yang, L. M., & Hou, G. X. (2020). Analysis and assessment of the no-slip and slip boundary conditions for the discrete unified gas kinetic scheme. Physical Review E, 101(2), 023312. [13] Chen, Z., Shu, C., Yang, L. M., Zhao, X., & Liu, N. Y. (2020). Immersed boundary–simplified thermal lattice Boltzmann method for incompressible thermal flows. Physics of Fluids, 32(1), 013605. [14] Liu, Y. Y., Shu, C., Zhang, H. W., & Yang, L. M. (2020). A high order least square-based finite difference-finite volume method with lattice Boltzmann flux solver for simulation of incompressible flows on unstructured grids. Journal of Computational Physics, 401, 109019. [15] Lin, X. J., Wu, J., Zhang, T. W., & Yang, L. M. (2020). Self-organization of multiple self-propelling flapping foils: energy saving and increased speed. Journal of Fluid Mechanics, 884. [16] Yang, T. P., Wang, J. F., Yang, L. M., & Shu, C. (2020). Development of multi-component generalized sphere function based gas-kinetic flux solver for simulation of compressible viscous reacting flows. Computers & Fluids, 197, 104382. [17] Zhou, D. Z., Yang, W. M., Yang, L. M., & Lu, X. (2020). Modelling internal combustion engines with dynamic staggered mesh refinement. Combustion Theory and Modelling, 24(1), 142-175. 2019年 [1] Yang, L. M., Shu, C., Yang, W. M., & Wu, J. (2019). An improved three-dimensional implicit discrete velocity method on unstructured meshes for all Knudsen number flows. Journal of Computational Physics, 396, 738-760. [2] Yang, L. M., Shu, C., Yang, W. M., & Wu, J. (2019). Simulation of conjugate heat transfer problems by lattice Boltzmann flux solver. International Journal of Heat and Mass Transfer, 137, 895-907. [3] Yang, L. M., Shu, C., Yang, W. M., Wu, J., & Zhang, M. Q. (2019). Numerical investigation on performance of three solution reconstructions at cell interface in DVM simulation of flows in all Knudsen number regimes. International Journal for Numerical Methods in Fluids, 90(11), 545-563. [4] Dong, H., & Yang, L. M. (2019). An Immersed Boundary-Simplified Gas Kinetic Scheme for 2D Incompressible Flows with Curved and Moving Boundaries. Advances in Applied Mathematics and mechanics, 11(5), 1177-1199. [5] Liu, Y. Y., Zhang, H. W., Yang, L. M., & Shu, C. (2019). High-order least-square-based finite-difference–finite-volume method for simulation of incompressible thermal flows on arbitrary grids. Physical Review E, 100(6), 063308. [6] Yang, T. P., Wang, J. F., Yang, L. M., & Shu, C. (2019). Development of multicomponent lattice Boltzmann flux solver for simulation of compressible viscous reacting flows. Physical Review E, 100(3), 033315. [7] Zhang, L. Q., Chen, Z., Yang, L. M., & Shu, C. (2019). An improved discrete gas-kinetic scheme for two-dimensional viscous incompressible and compressible flows. Physics of Fluids, 31(6), 066103. [8] Zhang, L. Q., Chen, Z., Yang, L. M., & Zhang, M. Q. (2019). An improved axisymmetric lattice Boltzmann flux solver for axisymmetric isothermal/thermal flows. International Journal for Numerical Methods in Fluids, 90(12), 632-650. [9] Lin, X. J., Wu, J., Zhang, T. W., & Yang, L. M. (2019). Phase difference effect on collective locomotion of two tandem autopropelled flapping foils. Physical Review Fluids, 4(5), 054101. [10] Dong, H., Liu, S. C., Geng, X. Liu, S., Yang, L. M., & Cheng, K. M. (2019). Numerical and experimental investigation into hypersonic boundary layer transition induced by roughness elements. Chinese Journal of Aeronautics, 32(3), 559-567.

学术兼职

担任美国数学会Amerian Mathematical Society(AMS)评论员,《气动研究与实验》青年编委,Entropy和Advances in Mechanical Engineering期刊客座编辑,Journal of Computational Physics等10余种SCI期刊审稿人

推荐链接
down
wechat
bug