近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] Wang FL, He YL, Tang SZ, Kulacki FA, Tao YB. Multi-objective optimization of a dual-layer granular filter for hot gas clean-up by using genetic algorithm[J]. Applied Energy, 2019, 248: 463-474.
[2] Wang FL, Tang SZ, He YL, Kulacki FA, Tao YB. Parameter study of filtration characteristics of granular filters for hot gas clean-up[J]. Powder Technology, 2019, 353: 267-275.
[3] Wang FL, He YL, Tang SZ, Kulacki FA, Tao YB. Real-time particle filtration of granular filters for hot gas clean-up[J]. Fuel, 2019, 237: 308-319.
[4] Wang FL, Tang SZ, He YL, Kulacki FA, Yu Y. Heat transfer and fouling performance of finned tube heat exchangers: Experimentation via on line monitoring[J]. Fuel, 2019, 236: 949-959.
[5] Wang FL, He YL, Tang SZ, Kulacki FA, Tao YB. Particle filtration characteristics of typical packing granular filters used in hot gas clean-up[J]. Fuel, 2018, 234: 9-19.
[6] Wang FL, He YL, Tang SZ, Tong ZX. Parameter study on the fouling characteristics of the H-type finned tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2017, 112: 367-378.
[7] Wang FL, He YL, Tong ZX, Tang SZ. Real-time fouling characteristics of a typical heat exchanger used in the waste heat recovery systems[J]. International Journal of Heat and Mass Transfer, 2017, 104: 774-786.
[8] Tang SZ, Wang FL, He YL, Yu Y, Tong ZX. Parametric optimization of H-type finned tube with longitudinal vortex generators by response surface model and genetic algorithm[J]. Applied Energy, 2019, 239: 908-918.
[9] Tang SZ, Wang FL, Ren QL, He YL. Fouling characteristics analysis and morphology prediction of heat exchangers with a particulate fouling model considering deposition and removal mechanisms[J]. Fuel, 2017, 203: 725-738.
[10] Tang SZ, Li MJ, Wang FL, Liu ZB. Fouling and thermal-hydraulic characteristics of aligned elliptical tube and honeycomb circular tube in flue gas heat exchangers[J]. Fuel, 2019, 251: 316-327.
[11] Tang SZ, He YL, Wang FL, Tao YB. Parametric study on fouling mechanism and heat transfer characteristics of tube bundle heat exchangers for reducing fouling considering the deposition and removal mechanisms[J]. Fuel, 2018, 211: 301-311.
[12] Li MJ, Tang SZ, Wang FL, Zhao QX, Tao WQ. Gas-side fouling, erosion and corrosion of heat exchangers for middle/low temperature waste heat utilization: A review on simulation and experiment[J]. Applied Thermal Engineering, 2017, 126: 737-761.
[13] Yu YS, Tao YB, Wang FL, He YL. Parameter study and optimization on filtration and resistance characteristics of granular bed filter[J]. Advanced Powder Technology, 2018, 29(12): 3250-3256.
[14] He YL, Tang SZ, Tao WQ, Li MJ, Wang FL. A general and rapid method for performance evaluation of enhanced heat transfer techniques[J]. International Journal of Heat and Mass Transfer, 2019, 145: 118780.
[15] Zhang XK, He YL, Tang SZ, Wang FL, Xie T. An electromagnetics-temperature-component multi-physical coupled model for electric furnace in calcium carbide smelting process[J]. Applied Thermal Engineering, 2020, 165: 114552.
[16] Tang SZ, Li MJ, Wang FL, He YL, Tao WQ. Fouling potential prediction and multi-objective optimization of a flue gas heat exchanger using neural networks and genetic algorithms[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119488.
[17] Zhang K, Li MJ, Wang FL, He YL. Experimental and numerical investigation of natural convection heat transfer of W-type fin arrays[J]. International Journal of Heat and Mass Transfer, 2020, 152: 119315.
[18] Tang SZ, He Y, He YL, Wang FL. Enhancing the thermal response of a latent heat storage system for suppressing temperature fluctuation of dusty flue gas[J]. Applied Energy, 2020, 266: 114870.
[19] Wang FL, He YL, Tong ZX, Tao WQ. Numerical study of heat transfer and fly ash deposition characteristics for two kinds of H-type finned tubes[C]. //1st Thermal and Fluid Engineering Summer Conference, New York, USA, August 9-12, 2015.
[20] Yu YS, Tao YB, Wang FL, Chen X, He YL. Filtration performance of the granular bed filter used for industrial flue gas purification: A review of simulation and experiment[J]. Separation and Purification Technology, 2020, 251: 117318.
[21] 王飞龙, 何雅玲, 汤松臻, 李明佳, 于洋. 超大拓展表面三维微肋管换热器的对流换热及抗积灰特性研究. 工程热物理学报, 2020,41(02):411-419.
[22] 王飞龙, 何雅玲, 汤松臻, 童自翔. 典型烟气余热换热器气侧积灰特性研究[J]. 科学通报, 2017, 62(12): 1292-1301.
[23] 张凯, 王飞龙, 何雅玲. 新型仿生结构强化管流动与换热性能数值研究[J]. 工程热物理学报, 2019, 40(02): 375-381.
[24] 王文奇, 王飞龙, 何雅玲, 校敏奇. 一种新型树叶形翅片的数值与实验研究[J]. 工程热物理学报, 2018, 39(11): 2469-2475.
[25] 汤松臻, 王飞龙, 童自翔, 何雅玲. 烟气余热回收换热器积灰抑制技术研究及参数优化[J]. 西安交通大学学报, 2017, 51(09): 19-25.
[26] 梁奇, 毛荐, 王飞龙, 何雅玲. 单钩型波形板气液分离器结构参数优化研究[J]. 工程热物理学报, 2016, 37(04): 796-802.
[27] 何雅玲, 汤松臻, 王飞龙, 赵钦新, 陶文铨. 中低温烟气换热器气侧积灰、磨损及腐蚀的研究[J]. 科学通报, 2016, 61(17): 1858-1876.
[28] 汤松臻,王飞龙,赵钦新,何雅玲,于洋.蜂巢式烟气换热器积灰特性及其参数化研究[J].工程热物理学报,2019,40(09):2156-2161.
[29] 王特,王飞龙,范爱武,刘伟.内置交替轴扭带的管内层流换热特性[J].化工学报,2014,65(S1):316-322.