个人简介
教育经历
[1]. 2013.9- 2018.6
南京航空航天大学 | 航空宇航推进理论与工程 | 博士研究生毕业 | 工学博士学位
研究方向
[1].1.人工智能算法及航空发动机机载模型建模
1.1航空发动机机载自适应模型建模;
1.2机器学习及应用;
1.3深度学习及应用.
[2].2.飞机/发动机综合优化控制
2.1稳态优化控制;
2.2过渡态优化控制;
2.3相关优化算法.
[3].3.智能航空发动机控制:
3.1航空发动机寿命延长;
3.2航空发动机应急控制;
3.3模型预测控制及其相关优化算法;
3.4基线模式及多模式优化控制技术;
3.5主动控制
个人简介:
以下信息由研究生系统导入,请酌情修改完善
2019-至今 南京航空航天大学 在职博士后
2018-至今 南京航空航天大学 能源与动力学院 讲师
科研成果获奖及专利:
1. 郑前钢,华伟;等;基于单纯形样条函数的航空发动机稳态模型的建模方法, ZL201510251444.7 授权日期:20180105
2. 郑前钢,缪丽祯,等. 基于贝塞尔曲线的涡扇发动机加速过程控制律设计方法, ZL 201610021317.2 授权日期:20180417
3. 郑前钢,徐田镇. 用于自旋恢复的直升机非线性预测控制方法及装置,ZL201610184036.9授权日期:20180731
4. 郑前钢,陈浩颖,李永进,刘明磊,席志华,胡忠志,李秋红,张海波.基于延寿控制的航空发动机加速控制实时优化方法、装置, ZL201810163571.5, 授权日期:20190705
5. 郑前钢 柳亚冰 胡旭 汪勇 陈浩颖 胡忠志 张海波 李秋红. 基于非线性模型预测控制的航空发动机直接推力控制方法. ZL201910531675.1授权日期:2020年02月18日
6. 郑前钢 房娟 陈浩颖 汪勇 金崇文 高远 胡忠志 张海波.基于深度Q学习的航空发动机控制装置. ZL20190531252.X .授权: 2020年04月21日
7. 郑前钢 汪勇 刘子赫 房娟 胡忠志 张海波 李秋红. 基于燃油逆映射的航空发动机极限保护方法及装置. 申请号: 201910531273.1 .申请日:2019年06月19日
8. 郑前钢 金崇文 陈浩颖 汪勇 房娟 项德威 胡忠志 张海波 基于深度神经网络的航空发动机稳态模型建模方法.申请号: 201910823633.5 .申请日:2019年09月02日
9. 郑前钢 刘子赫 汪勇 陈浩颖 项德威 金崇文 胡忠志 张海波.一种基于神经网络的航空发动机动态模型建模方法 .申请号: 201910823121.9 .申请日: 2019年09月02日
10. 郑前钢 杜紫岩 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红. 一种航空发动机直接推力逆控制方法及装置.申请号: 201910823671.0 .申请日:2019年09月02日
11. 郑前钢 高远 汪勇 陈浩颖 刘子赫 胡忠志 张海波 李秋红.一种基于非线性模型预测的航空发动机控制方法.申请号: 201910823692.2 .申请日:2019年09月02日
12. 郑前钢 蔡常鹏 汪勇 陈浩颖 项德威 张海波 李秋红 胡忠志. 基于复合模型预测控制的航空发动机直接推力控制方法. 申请号:2020010329284.4. 申请日:2020年04月23日
13. 郑前钢 项德威 席志华 陈浩颖 刘子赫 张海波 胡忠志 李秋红. 一种基于深强化学习的航空发动机控制方法、装置. 申请号: 2020010328588.9. 申请日:2020年04月23日
14. 刘明磊,郑前钢,等; 高超声速超燃冲压发动机实时模型、仿真方法, CN105446167A(公开).
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Zheng Q, Miao L, Zhang H, Ye Z. On-board real-time optimization control for turbofan engine thrust under flight emergency condition[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2017, 231(7): 554-566.
2. Zheng Q, Zhang H, Miao L, et al. On-board real-time optimization control for turbo-fan engine life extending[J]. International Journal of Turbo & Jet-Engines, 2017, 34(4): 321-332.
3. Zheng Q, Zhang HB, Li Y, et al. Aero-engine On-board Dynamic Adaptive MGD Neural Network Model within a Large Flight Envelope[J]. IEEE Access, 2018,6(1): 45755-45761.
4. Zheng Q, Xu Z, Zhang H, et al. A turboshaft engine NMPC scheme for helicopter autorotation recovery maneuver[J]. Aerospace Science and Technology, 2018, 76: 421-432.
5. Zheng Q, Zhang H. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316.
6. Zheng Q, Jin C, Hu Z, et al. A Study of Aero-Engine Control Method Based on Deep Reinforcement Learning[J]. IEEE Access, 2019, 7: 55285-55289. DOI: 10.1109/ACCESS.2018.2883997
7. Zheng QG, Du ZY, Da W, et al.Direct Thrust Inverse Control of Aero-engine based on Deep Neural Network[J]. International Journal of Turbo & Jet-Engines,2019, DOI: https://doi.org/10.1515/tjj-2018-0049
8. Zheng Q, Fang J, Hu Z, et al. Aero-Engine On-Board Model Based on Batch Normalize Deep Neural Network[J]. IEEE Access, 2019, 7: 54855-54862. DOI 10.1109/ACCESS.2018.2885199
9. Zheng QG, Wang Y, Sun FY, et al. Aero-engine Direct Thrust Control with Nonlinear Model Predictive Control based on Linearized DNN Predictor[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, DOI: 10.1177/0959651819853395
10. Zheng Q, Pang S, Zhang H, et al. A Study on Aero-Engine Direct Thrust Control with Nonlinear Model Predictive Control Based on Deep Neural Network[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(4): 933-939. https://doi.org/10.1007/s42405-019-00191-4
11. Zheng Q, Xu Z, Wang Y, et al. Overall optimization design of high temperature components cooling coefficient for lower infrared turbofan engine[J]. Infrared Physics & Technology, 2019, 102: 102990. https://doi.org/10.1016/j.infrared.2019.102990
12. Zheng Q, Wang Y, Sun F, et al. Research on aero-engine steady model based on an improved compact propulsion system model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019: 0959651819878527. https://doi.org/10.1177/0959651819878527
13. Zheng Q, Chen H, Wang Y, et al. Research on hybrid optimization and deep learning modeling method in the performance seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020: 0954410020903151. https://doi.org/10.1177/0954410020903151
14. Zheng Q, Fu D, Wang Y, et al. A study on global optimization and deep neural network modeling method in performance-seeking control[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2020, 234(1): 46-59. https://doi.org/10.1177/0959651819852477
15. Zheng Q, Xi Z, Hu C, et al. A Research on Aero-engine Control based on Deep Q Learning[J]. International Journal of Turbo & Jet-Engines,2020
16. Qiangang Zheng, Juan Fang, et al. Research on Performance Seeking Control based on Beetle Antennae Search Algorithm[J]. Measurement and Control,2020,https://doi.org/10.1177/0020294020944939
17. Qiangang Zheng, Wang yong, Aero-engine Dynamic Model based on an Improved Compact Propulsion System Dynamic Model[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering,2020
18. 郑前钢, 张海波, 李永进. 基于单纯B样条的航空发动机机载稳态模型研究[J]. 推进技术, 2015, 36(12):1887-1894. (EI);
19. 郑前钢, 张海波, 叶志锋,等. 基于变导叶调节的涡扇发动机加速过程优化控制[J]. 航空动力学报, 2016, 31(11):2801-2808. (EI);
20. Wang Y, Zheng Q, Du Z, Zhang H. Research on nonlinear model predictive control for turboshaft engines based on double engines torques matching[J]. Chinese Journal of Aeronautics, 2019, 33(2), 561:571.
21. Wang Y, Zheng Q, Xu Z, Zhang H. A Novel Control Method for Turboshaft Engine with Varia-ble Rotor Speed Based on the Ngdot Estimator through LQG/LTR and Rotor Predicted Torque Feedforward (Accepted) [J]. Chinese Journal of Aeronautics, 2019.
22. Wang Y, Zheng Q, Zhang H, et al. A Study on the Acceleration Optimization Control Method for the Integrated Helicopter/Engine System Based on Torsional Vibration Suppression[J]. IEEE Access, 2018, 7: 1182-1194.
23. Wang Y, Zheng Q, Zhang H, et al. Adaptive control and predictive control for torsional vibration suppression in helicopter/engine system[J]. IEEE Access, 2018, 6: 23896-23906.
24. Wang Y, Zheng Q, Zhang H, et al. Research on predictive control of helicopter/engine based on LMS adaptive torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2018, 37(4): 1151-1163.
25. Wang Y, Zheng Q, Zhang H, et al. The LQG/LTR control method for turboshaft engine with variable rotor speed based on torsional vibration suppression[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2019: 1461348419847010.
26. Wang Y, Zheng Q, Zhang H, et al. Research on integrated control method of tiltrotor with variable rotor speed based on two-speed gearbox[J]. International Journal of Turbo & Jet-Engines, 2018.
27. Wang Y, Zheng Q, Fu D, Zhang H. Study on Adaptive Torsional Vibration Suppression Methods for Helicopter/ Turboshaft Engine System with Variable Rotor Speed [J]. Asian Journal of Control, 2019.
28. Wang Y, Zheng Q, Zhang H, et al. A Study on Torsional Vibration Suppression Method for an Integrated Helicopter/Engine System[J]. International Journal of Turbo & Jet-Engines, 2018.
29. Wang Y, Zheng Q, Zhang H, et al. A Study on Nonlinear Model Predictive Control for Helicopter/Engine with Variable Rotor Speed Based on Linear Kalman Filter[J]. International Journal of Turbo & Jet-Engines, 2019.