近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Yu, C., Gao, H.M., and Wan, G. (2021). Macrophages Are Dispensable for Postnatal Pruning of the Cochlear Ribbon Synapses. Front Cell Neurosci, doi: 10.3389/fncel.2021.736120.
2. Chen, Z., Huang, Y., Yu, C., Liu, Q., Qiu, C., and Wan, G. (2021). Cochlear Sox2+ glial cells are potent progenitors for spiral ganglion neuron reprogramming induced by small molecules. Front Cell Dev Biol, 9:728352.
3. Liu, Q., Zhang, L., Zhu, M.S., and Wan, G. (2021). High-throughput screening on cochlear organoids identifies VEGFR-MEK-TGFB1 signaling promoting hair cell reprogramming. Stem Cell Rep, 16:2257-2273.
4. Zhu, G.J.*, Gong, S.*, Ma, D.B.*, Tao, T.*, He, W.Q.*, Zhang, L., Wang, F., Qian, X.Y., Zhou, H., Fan, C., Wang, P., Chen, X., Zhao, W., Sun, J., Chen, H., Wang, Y., Gao, X., Zuo, J., Zhu, M.S.#, Gao, X.#, and Wan, G.# (2020). Aldh inhibitor restores auditory function in a mouse model of human deafness. PLOS Genet, 16(9):e1009040.
5. Du, H.*, Ye, C.*, Wu, D.*, Zang, Y.Y., Zhang, L., Chen, C., He, X.Y., Yang, J.J., Hu, P., Xu, Z., Wan, G.#, and Shi, Y.S.# (2020). The cation channel TMEM63B is an osmosensor required for hearing. Cell Rep, 31(5):107596.
Recommendation: Tobias Moser, Faculty Opinions, Very good.
6. Kohrman, D.C.*, Wan, G.*, Cassinotti, L.*, and Corfas, G. (2020). Hidden Hearing Loss: A Disorder with Multiple Etiologies and Mechanisms. Cold Spring Harb Perspect Med, 10(1):a035493.
7. Wan, G.*,#, Ji, L.*, Schrepfer, T., Gong, S., Wang, G.P., and Corfas G.# (2019). Synaptopathy as a Mechanism for Age-Related Vestibular Dysfunction in Mice. Front Aging Neurosci, 11:156.
8. Wan, G.#, and Corfas, G.# (2017). Transient auditory nerve demyelination as a new mechanism for hidden hearing loss. Nat Commun, 8, 14487.
Recommendation: Brain Popko, Faculty Opinions, Very good.
9. Long, P.*, Wan, G.*, Roberts, M,T., and Corfas, G. (2017). Myelin development, plasticity, and pathology in the auditory system. Dev Neurobiol, 78 (2), 80-92.
10. Wan, G., and Corfas, G. (2015). No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses. Hear Res, 329, 1-10.
11. Wan, G., Gómez-Casati, M.E., Gigliello, A.R., Liberman, M.C., and Corfas, G. (2014). Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. eLife, 3, e03564.
Commentary: Cunningham, L.L., and Tucci, D.L. (2015). Restoring synaptic connections in the inner ear after noise damage. N Engl J Med, 372(2), 181-182.
12. Mellado Lagarde, M.M.*, Wan, G.*, Zhang, L., Gigliello, A.R., McInnis, J.J., Zhang, Y., Bergles, D.E., Zuo, J.#, and Corfas, G.# (2014). Spontaneous regeneration of cochlear supporting cells after neonatal ablation ensures hearing in the adult mouse. Proc Natl Acad Sci USA, 111(47), 16919-24.
Editor’s Choice: Kiberstis, P.A. (2014). Supporting cells take on a starring role. Science, 346(6214), 1197.