近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Zhang L, Wang S X, Wang L, Wu Y, Duan L, Wu Q R, Wang F Y, Yang M, Yang H, Hao J M, Liu X. Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environmental Science and Technology, 2015, 49(5): 3185–3194.(ESI高被引论文)
Zhang L, Wang S X, Meng Y, Hao J M. Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China. Environmental Science and Technology, 2012, 46(11): 6385–6392.
Zhang L, Wang S X, Wang L, Hao J M. Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implication of mercury emission sources. Atmospheric Chemistry and Physics, 2013, 13(20): 10505–10516.
Zhang L, Wang S X, Wu Q R, Wang F Y, Lin C J, Zhang L M, Hui M L, Yang M, Su H T, Hao J M. Mercury transformation and speciation in flue gases from anthropogenic emission sources: a critical review. Atmospheric Chemistry and Physics, 2016, 16(4): 2417–2433.
Zhang L*, Zhou P S, Cao S Z, Zhao Y. Atmospheric mercury deposition over the land surfaces and the associated uncertainties in observations and simulations: a critical review. Atmospheric Chemistry and Physics, 2019, 19(24): 15587–15608.
Zhang L*, Zhou P S, Zhong H, Zhao Y, Dai L, Wang Q G, Xi M X, Lu Y, Wang Y T. Quantifying the impacts of anthropogenic and natural perturbations on gaseous elemental mercury (GEM) at a suburban site in eastern China using generalized additive models. Atmospheric Environment, 2021, 247: 118181.
Zhang L*, Jaffe D A. Trends and sources of ozone and sub-micron aerosols at the Mt. Bachelor Observatory (MBO) during 2004–2015. Atmospheric Environment, 2017, 165: 143–154.
Zhang L*, Jaffe D A, Gao X, McClure C D. A quantification method for peroxyacetyl nitrate (PAN) using gas chromatography (GC) with a non-radioactive pulsed discharge detector (PDD). Atmospheric Environment, 2018, 179: 23–30.
Zhang L, Wang S X, Wu Q R, Meng Y, Yang H, Wang F Y, Hao J M. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters. Environmental Pollution, 2012, 171: 109–117.
Zhang L, Daukoru M, Torkamani S, Wang S X, Hao J M, Biswas P. Measurements of mercury speciation and fine particle size distribution on combustion of China coal seams. Fuel, 2013, 104: 732–738.
Zhang L, Wang L, Wang S X, Dou H Y, Li J F, Li S, Hao J M. Characteristics and sources of speciated atmospheric mercury at a coastal site in the East China Sea region. Aerosol and Air Quality Research, 2017, 17(12): 2913–2923.
Wang S X, Zhang L, Li G H, Wu Y, Hao J M, Pirrone N, Sprovieri F, Ancora M P. Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics, 2010, 10(3): 1183–1192.
Jaffe D A, Zhang L. Meteorological anomalies lead to elevated O3 in the western US in June 2015. Geophysical Research Letters, 2017, 44(4): 1990–1997.(当期封面文章)
Wang S X, Zhang L, Zhao B, Meng Y, Hao J M. Mitigation potential of mercury emissions from coal-fired power plants in China. Energy and Fuels, 2012, 26(8): 4635–4642.
Wang S X, Zhang L, Wu Y, Ancora M P, Zhao Y, Hao J M. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China. Journal of the Air and Waste Management Association, 2010, 60(6): 722–730.
Wang S X, Zhang L, Wang L, Wu Q R, Wang F Y, Hao J M. A review of atmospheric mercury emissions, pollution and control in China. Frontiers of Environmental Science and Engineering, 2014, 8(5): 631–649.
Ancora M P, Zhang L, Wang S X, Schreifels J J, Hao J M. Meeting Minamata: cost-effective compliance options for atmospheric mercury control in Chinese coal-fired power plants. Energy Policy, 2016, 88: 485–494.
Ancora M P, Zhang L, Wang S X, Schreifels J, Hao J M. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China. Journal of Environmental Sciences, 2015, 33: 125–134.
Obrist D, Kirk J L, Zhang L, Sunderland E M, Jiskra M, Selin N E. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio, 2018, 47(2): 116–140.(ESI高被引论文)
Gustin M S, Dunham-Cheatham S M, Zhang L, Lyman S, Choma N, Castro M. Use of membranes and detailed HYSPLIT analyses to understand atmospheric particulate, gaseous oxidized, and reactive mercury chemistry. Environmental Science and Technology, 2021, 55(2): 893–901.
Gustin M S, Dunham-Cheatham S, Zhang L. Comparison of 4 methods for measurement of reactive, gaseous oxidized, and particulate bound mercury. Environmental Science and Technology, 2019, 53(24): 14489–14495.
Wu Q R, Wang S X, Zhang L, Hui M L, Wang F Y, Hao J M. Flow analysis of the mercury associated with nonferrous ore concentrates: implications on mercury emissions and recovery in China. Environmental Science and Technology, 2016, 50(4): 1796–1803.
Wu Q R, Wang S X, Zhang L, Song J X, Yang H, Meng Y. Update of mercury emissions from China’s primary zinc, lead and copper smelters, 2000–2010. Atmospheric Chemistry and Physics, 2012, 12(22): 11153–11163.
Yang Y, Zhao Y, Zhang L, Zhang J, Huang X, Zhao X F, Zhang Y, Xi M X, Lu Y. Improvement of the satellite-derived NOx emissions on air quality modeling and its effect on ozone and secondary inorganic aerosol formation in the Yangtze River Delta, China. Atmospheric Chemistry and Physics, 2021, 21(2): 1191–1209.
Wang F Y, Wang S X, Zhang L, Yang H, Wu Q R, Hao J M. Characteristics of mercury cycling in the cement production process. Journal of Hazardous Materials, 2016, 302: 27–35.
Wang F Y, Wang S X, Zhang L, Yang H, Wu Q R, Hao J M. Mercury enrichment and its effects on atmospheric emissions in cement plants of China. Atmospheric Environment, 2014, 92: 421–428.
Yang Y, Zhao Y, Zhang L, Lu Y. Evaluating the methods and influencing factors of satellite-derived estimates of NOX emissions at regional scale: A case study for Yangtze River Delta, China. Atmospheric Environment, 2019, 219: 117051.
Wang L, Wang S X, Zhang L, Wang Y X, Zhang Y X, Nielsen C, McElroy M B, Hao J M. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model. Environmental Pollution, 2014, 190: 166–175.
Wang Y T, Zhao Y, Zhang L, Zhang J, Liu Y. Modified regional biogenic VOC emissions with actual ozone stress and integrated land cover information: A case study in Yangtze River Delta, China. Science of the Total Environment, 2020, 727: 138703.
Liu X L, Wang S X, Zhang L, Wu Y, Duan L, Hao J M. Speciation of mercury in FGD gypsum and mercury emission during the wallboard production in China. Fuel, 2013, 111: 621–627.
Wang F Y, Wang S X, Zhang L, Yang H, Gao W, Wu Q R, Hao J M. Mercury mass flow in iron and steel production process and its implications for mercury emission control. Journal of Environmental Sciences, 2016, 43: 293–301.
Yang M, Wang S X, Zhang L, Wu Q R, Wang F Y, Hui M L, Yang H, Hao J M. Mercury emission and speciation from industrial gold production using roasting process. Journal of Geochemical Exploration, 2016, 170: 72–77.
Fu X, Wang T, Wang S X, Zhang L, Cai S Y, Xing J, Hao J M. Anthropogenic emissions of hydrogen chloride and fine particulate chloride in China. Environmental Science and Technology, 2018, 52(3): 1644–1654.
Bi X Y, Li Z G, Wang S X, Zhang L, Xu R, Liu J L, Yang H M, Guo M Z. Lead isotopic compositions of selected coals, Pb/Zn ores and fuels in China and the application for source tracing. Environmental Science and Technology, 2017, 51(22), 13502–13508.
Zhong H, Zhao Y, Muntean M, Zhang L, Zhang J. A high-resolution regional emission inventory of atmospheric mercury and its comparison with multi-scale inventories: a case study of Jiangsu, China. Atmospheric Chemistry and Physics, 2016, 16(23): 15119–15134.
Luippold A, Gustin M S, Dunham-Cheatham S M, Zhang L. Improvement of quantification and identification of atmospheric reactive mercury. Atmospheric Environment, 2020, 224: 117307.
Wang F Y, Wang S X, Meng Y, Zhang L, Wu Q R, Hao J M. Mechanisms and roles of fly ash compositions on the adsorption and oxidation of mercury in flue gas from coal combustion. Fuel, 2016, 163: 232–239.
Wu R R, Zhao Y, Zhang J, Zhang L. Variability and sources of ambient volatile organic compounds based on online measurements in a suburban region of Nanjing, eastern China. Aerosol and Air Quality Research, 2020, 20: 606–619.
Hui M L, Wu Q R, Wang S X, Liang S, Zhang L, Wang F Y, Lenzen M, Wang Y F, Xu L X, Lin Z T, Yang H, Lin Y, Larssen T, Xu M, Hao J M. Mercury flows in China and global drivers. Environmental Science and Technology, 2017, 51(1): 222–231.
Wan Q, Yao Q, Duan L, Li X H, Zhang L, Hao J M. Comparison of elemental mercury oxidation across vanadium and cerium based catalysts in coal combustion flue gas: Catalytic performances and particulate matter effects. Environmental Science and Technology, 2018, 52(5): 2981–2987.
Wu Q R, Wang S X, Hui M L, Wang F Y, Zhang L, Duan L, Luo Y. New insight into atmospheric mercury emissions from zinc smelters using mass flow analysis. Environmental Science and Technology, 2015, 49(6): 3532–3539.
Wang S X, Song J X, Li G H, Wu Y, Zhang L, Wan Q, Streets D G, Chin C K, Hao J M. Estimating mercury emissions from a zinc smelter in relation to China’s mercury control policies. Environmental Pollution, 2010, 158(10): 3347–3353.
Wang F Y, Li G L, Wang S X, Wu Q R, Zhang L. Modeling the heterogeneous oxidation of elemental mercury by chlorine in flue gas. Fuel, 2020, 262: 116506.
Liu K Y, Wang S X, Wu Q R, Wang L, Ma Q, Zhang L, Li G L, Tian H Z, Duan L, Hao J M. A highly resolved mercury emission inventory of Chinese coal-fired power plants. Environmental Science and Technology, 2018, 52(4): 2400–2408.
Li G L, Wu Q R, Wang S X, Duan Z Y, Su H T, Zhang L, Li Z J, Tang Y, Zhao M J, Chen L, Liu K Y, Zhang Y. Improving flue gas mercury removal in waste incinerators by optimization of carbon injection rate. Environmental Science and Technology, 2018, 52(4): 1940–1945.
Wu Q R, Wang S X, Wang L, Liu F, Lin C J, Zhang L, Wang F Y. Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter. Science of the Total Environment, 2014, 496: 668–677.
Luippold A, Gustin M S, Dunham-Cheatham S M, Castro M, Luke W, Lyman S, Zhang L. Use of multiple lines of evidence to understand reactive mercury concentrations and chemistry in Hawai'i, Nevada, Maryland, and Utah, USA. Environmental Science and Technology, 2020, 54(13): 7922–7931.
Tang Y, Wang S X, Wu Q R, Liu K Y, Wang L, Li S, Gao W, Zhang L, Zheng H T, Li Z J, Hao J M. Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions. Atmospheric Chemistry and Physics, 2018, 18(11): 8279–8291.
Rönkkö T J, Jalava P I, Happo M S, Kasurinen S, Sippula O, Leskinen A, Koponen H, Kuuspalo K, Ruusunen J, Väisänen O, Hao L, Ruuskanen A, Orasche J, Fang D, Zhang L, Lehtinen K E J, Zhao Y, Gu C, Wang Q g, Jokiniemi J, Komppula M, Hirvonen M-R. Emissions and atmospheric processes influence the chemical composition and toxicological properties of urban air particulate matter in Nanjing, China. Science of the Total Environment, 2018, 639: 1290–1310.
惠霂霖, 张磊, 王祖光, 王书肖. 中国燃煤电厂汞的物质流向与汞排放研究. 中国环境科学, 2015, 35(8): 2241–2250.(《中国环境科学》2015年度十佳优秀论文)
段振亚, 黄文博, 王凤阳, 张磊, 王书肖. 溴添加对燃煤烟气汞形态转化的影响. 中国环境科学, 2015, 35(7): 1975–1982.
张磊, 王书肖, 惠霂霖, 郝吉明. 我国燃煤部门履行《关于汞的水俣公约》的对策建议. 环境保护, 2016, 44(22): 38–42.
惠霂霖, 张磊*, 王书肖, 蔡思翌, 赵斌. 中国燃煤部门大气汞排放协同控制效果评估及未来预测. 环境科学学报, 2017, 37(1): 11–22.
王书肖, 张磊. 我国人为大气汞排放的环境影响及控制对策. 环境保护, 2013, 41(9): 31–34.
王书肖, 张磊. 燃煤电厂大气汞排放控制的必要性与防治技术分析. 环境保护, 2012, 1(9): 31–33.
段振亚, 李韶璞, 张磊, 焦煜, 黄文博, 王书肖. 卤素添加脱除燃煤烟气汞机理研究及工业应用. 化学工程, 2018, 46(9): 6–11.
李舒, 高伟, 王书肖, 张磊, 李智坚, 王龙, 郝吉明. 上海崇明地区大气分形态汞污染特征. 环境科学, 2016, 37(9): 3290–3299.
段振亚, 苏海涛, 王凤阳, 张磊, 王书肖, 余斌. 重庆市垃圾焚烧厂汞的分布特征与大气汞排放因子研究. 环境科学, 2016, 37(2): 459–465.
窦红颖, 王书肖, 王龙, 张磊, 郝吉明. 长三角背景地区秋冬季节大气气态总汞含量特征研究. 环境科学, 2013, 34(1): 1–7.
危浩, 朱云, 许嘉钰, 余斌, 王书肖, 付学吾, Che-Jen Lin, 张磊, 杨文尉, 杨再东. 特种污染物排放源强反演及可视化分析工具研发及Hg2+分析示例. 环境科学学报, 2017, 37(2): 512–519.