个人简介
教育和工作经历
2021-至今,北京理工大学,助理教授
2016-2021,清华大学,化学工程与技术,博士
2017-2017,日本东京大学,访学
2012-2016,天津大学,应用化学,本科
获奖
2022 第一届全国先进储能技术创新挑战赛技术创新奖
2022 科睿唯安全球高被引科学家
2022 中国颗粒学会优秀博士学位论文
2021 科睿唯安全球高被引科学家
2021 作为清华毕业生代表向总书记汇报
2020 Chinese Chemical Letters优秀审稿人
2019 第四届全球锂电科学技术研讨会最佳墙报奖
2018 清华大学研究生特等奖学金
2018 清华大学学术新秀
2018 中国化学会第31届学术年会最佳墙报奖
研究领域
电极/电解液界面是二次电池中电荷转移的关键场所,直接影响电池的循环寿命、安全性等性能。主要从事二次电池中电极/电解液界面电化学过程及调控策略的研究工作,以新型高比能金属锂电池、锂硫电池为代表性体系。定量解析电极/电解液界面的电化学过程,推进高比能、长循环、高安全金属锂电池的调控策略。具体包括:
1)非水二次电池中电极/电解液界面电化学过程和模型
2)电极/电解液界面反应动力学
3)低成本、长循环电解液设计和定量检测
4)高能量密度金属锂电池器件
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
Shi, P.; Fu, Z. H.; Zhou, M. Y.; Chen, X.; Yao, N.; Hou, L. P.; Zhao, C. Z.; Li, B.-Q.; Huang, J.-Q.; Zhang, X. Q. *; Zhang, Q.*, Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries. Science Advances 2022, 8: eabq3445.
Zhou, M.-Y.; Ding, X.-Q.; Ding, J.-F.; Hou, L.-P.; Shi, P.; Xie, J.; Li, B.-Q.; Huang, J.-Q.; Zhang, X. Q. *; Zhang, Q. *, Quantifying the apparent electron transfer number of electrolyte decomposition reactions in anode-free batteries. Joule 2022, 2022, 6: 2122.
Shi, P.; Hou, L. P.; Jin, C. B.; Xiao, Y.; Yao, Y. X.; Xie, J.; Li, B. Q.; Zhang, X. Q.*; Zhang, Q.*, A Successive Conversion-Deintercalation Delithiation Mechanism for Practical Composite Lithium Anodes. Journal of the American Chemical Society 2022, 144: 212.
Hou, L.-P.; Zhang, X.-Q.*; Yao, N.; Chen, X.; Li, B.-Q.; Shi, P.; Jin, C.-B.; Huang, J.-Q.; Zhang, Q.*, An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries. Chem 2022, 8: 1083-1098.
Xie, J.; Sun, S. Y.; Chen, X.; Hou, L. P.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Zhang, X. Q.*; Zhang, Q.*, Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithium-Metal Batteries. Angewandte Chemie International Edition 2022, 61: e202204776.
Hou, L. P.; Li, Z.; Yao, N.; Bi, C. X.; Li, B. Q.; Chen, X.; Zhang, X. Q.*; Zhang, Q.*, Weakening the Solvating Power of Solvents to Encapsulate Lithium Polysulfides Enables Long-Cycling Lithium-Sulfur Batteries. Advanced Materials 2022, 34: e2205284.
Zhan, Y.-X.; Shi, P.; Jin, C.-B.; Xiao, Y.; Zhou, M.-Y.; Bi, C.-X.; Li, B.-Q.; Zhang, X. Q. *; Huang, J. Q. *, Regulating the Two-Stage Accumulation Mechanism of Inactive Lithium for Practical Composite Lithium Metal Anodes. Advanced Functional Materials 2022, 32: 2206834.
Hou, L.-P.; Yao, L.-Y.; Bi, C.-X.; Xie, J.; Li, B.-Q.; Huang, J.-Q.; Zhang, X.-Q.*, High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries. Journal of Energy Chemistry 2022, 68: 300.
Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. Q.; Shen, X.; Yan, C.; Huang, J. Q.; Zhang, Q., Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes. Angewandte Chemie International Edition 2018, 57: 5301.
Zhang, X. Q.; Li, T.; Li, B. Q.; Zhang, R.; Shi, P.; Yan, C.; Huang, J. Q.; Zhang, Q., A Sustainable Solid Electrolyte Interphase for High-Energy-Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie International Edition 2020, 59: 3252.