个人简介
教育经历
2011.10-2012.03 获2011“国家建设高水平大学研究生项目”资助在德国吉森大学数学系学习
2009.09-2012.06 华中师范大学数学与统计学学院基础数学专业博士学位研究生,获基础数学博士学位 研究方向:非线性椭圆型偏微分方程
2006.09-2009.06 华中师范大学数学与统计学学院基础数学专业硕士学位研究生,获基础数学硕士学位 研究方向:非线性椭圆型偏微分方程
2002.09-2006-06 衡阳师范学院数学系数学与应用数学专业
研究项目
国家自然科学面上基金项目(No. 11671162) 非线性泛函分析下的几类典型的椭圆问题,48万元,2017.01-2020.12.
国家自然科学青年基金项目(No. 11301204) 变分框架下的一类非局部的椭圆问题,23万元,2014.01-2016.12.
中央高校基本科研业务费项目青年教师项目(CCNU16A05011) 关于一类临界椭圆问题无穷多解的存在性的研究,6万元,2016.02-2017.12.
中央高校基本科研业务费项目青年教师项目(CCNU14A05036) 关于一类带电磁位势的薛定谔方程解的存在性的研究,5万元,2014.04-2016.03.
附件
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
26. Peng, Shuangjie; Wang, Chunhua; Yan, Shusen Construction of solutions via local Pohozaev identities. J. Funct. Anal. 274 (2018), no. 9, 2606–2633.
25. He, Qihan; Wang, Chunhua Nodal vector solutions with clustered peaks for nonlinear elliptic equations in R3. Proc. Roy. Soc. Edinburgh Sect. A 146 (2016), no. 5, 947–982.
24. Liu, Weiming; Wang, Chunhua Infinitely many solutions for a nonlinear Schrödinger equation with non-symmetric electromagnetic fields. Discrete Contin. Dyn. Syst. 36(2016), no. 12, 7081–7115.
23. Wang, Chunhua; Xiang, Chang-Lin Infinitely many solutions for quasilinear elliptic equations involving double critical terms and boundary geometry. Ann. Acad. Sci. Fenn. Math.41 (2016), no. 2, 973–1004.
22. Wang, Chunhua; Yang, Jing A note on the sign-changing solutions for a double critical Hardy-Sobolev-Maz'ya problem. Adv. Nonlinear Stud. 16 (2016), no. 3, 519–528.
21. Wang, Chunhua; Yang, Jing Infinitely many solutions for an elliptic problem with double critical Hardy-Sobolev-Maz'ya terms. Discrete Contin. Dyn. Syst. 36 (2016), no. 3, 1603–1628.
20. Wang, Chunhua; Yang, Jing Infinitely many solutions to a linearly coupled Schrödinger system with non-symmetric potentials. J. Math. Phys. 56 (2015), no. 5, 051505, 25 pp.
19. Wang, Chunhua; Xie, Dingyi; Zhan, Liping; Zhang, Lipan; Zhao, Liangpei Segregated vector solutions for nonlinear Schrödinger systems in R2. Acta Math. Sci. Ser. B (Engl. Ed.) 35 (2015), no. 2, 383–398.
18. Peng, Shuangjie; Wang, Chunhua Infinitely many solutions for a Hardy-Sobolev equation involving critical growth. Math. Methods Appl. Sci. 38 (2015), no. 2, 197–220.
17. Wang, Chunhua ; Qingfang Wang; Jing Yang On the Grushin critical problem with a cylindrical symmetry, Adv. Differential Equations , 20 (2015), no. 1-2, 77–116.
16. Liu, Weiming; Wang, Chunhua Multi peak Solutions of a Nonlinear Schrodinger Equation with Magnetic Fields. Adv. Nonlinear Stud.14 (2014), no. 11, 951–975.
15. Dai, Jinjun; Wang, Chunhua Nonexistence of solutions for a class of degenerate or singular equations. Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 21 (2014), no. 1, 55–78.
14. Wang, Chunhua Solutions for perturbed biharmonic equations with critical nonlinearity. Math. Methods Appl. Sci.37 (2014), no. 6,882–893.
13. Liu, Weiming; Wang, Chunhua Infinitely many solutions for the nonlinear Schrödinger equations with magnetic potentials in R^ N . J. Math. Phys.54 (2013), no. 12,121508, 23 pp.
12. Li, Gongbao; Wang, Chunhua Multiple solutions for a semilinear elliptic system in R^ N . Math. Methods Appl. Sci.36 (2013), no. 18,2456–2466.
11. Wang, Chunhua;Yang, Jing The existence of positive solutions to an elliptic system with nonlinear boundary conditions. Bound. Value Probl.2013, 2013:159, 17 pp.
10. Wang, Chunhua;Wang, Jiangtao Solutions of perturbed p-Laplacian equations with critical nonlinearity. J. Math. Phys.54 (2013), no. 1,013702, 16 pp.
9. Pi, Huirong; Wang, Chunhua Multi-bump solutions for nonlinear Schrödinger equations with electromagnetic fields. ESAIM Control Optim. Calc. Var.19 (2013), no. 1,91–111.
8. Li, Gongbao; Wang, Chunhua The existence of a nontrivial solution to p -Laplacian equations in R^N with supercritical growth. Math. Methods Appl. Sci.36 (2013), no. 1,69–79.
7. Wang, Chunhua; Wang, Jiangtao Infinitely many solutions for Hardy-Sobolev-Maz'ya equation involving critical growth. Commun. Contemp. Math.14 (2012), no. 6,1250044, 38 pp.
6. Li, Gongbao; Wang, Chunhua The existence of a nontrivial solution to a nonlinear elliptic problem of linking type without the Ambrosetti-Rabinowitz condition. Ann. Acad. Sci. Fenn. Math.36 (2011), no. 2,461–480.
5. Li, Gongbao; Peng, Shuangjie; Wang, Chunhua Infinitely many solutions for nonlinear Schrödinger equations with electromagnetic fields. J. Differential Equations251 (2011), no. 12,3500–3521.
4. Li, Gongbao; Peng, Shuangjie; Wang, Chunhua Multi-bump solutions for the nonlinear Schrödinger-Poisson system. J. Math. Phys.52 (2011), no. 5,053505, 19 pp.
3. Al-aati, Ali; Wang, Chunhua; Zhao, Jing Positive solutions to a semilinear elliptic equation with a Sobolev-Hardy term. Nonlinear Anal.74 (2011), no. 14,4847–4861.
2. Li, Gongbao; Wang, Chunhua The existence of nontrivial solutions to a semilinear elliptic system on R^ N without the Ambrosetti-Rabinowitz condition. Acta Math. Sci. Ser. B Engl. Ed.30 (2010), no. 6,1917–1936.
1.Tai, Shijian; Wang, Chunhua Existence of positive solutions for a class of degenerate or singular equations. Nonlinear Anal.71 (2009), no. 5-6,1691–1698.