当前位置: X-MOL首页全球导师 国内导师 › 林明辉

个人简介

开设课程 高等代数与解析几何 1, 高等代数与解析几何 2, 高等代数与解析几何 3, 抽象代数(本科生、研究生、交换生), 复分析等 教育经历 2005.9-2010.8 : 就读于加拿大麦克马斯特大学数学系,2010.8 获博士学位 (导师:Romyar Sharifi) 2003.8-2005.7 : 就读于新加坡国立大学数学系,2005.8 获硕士学位 (导师: Jon Berrick) 1999.7-2003.6 : 就读于新加坡国立大学数学系,2003.6 获第一荣誉学士学位 工作经历 2015.3- : 华中师范大学数学与统计学学院工作 2010.9-2014.10 : 工作于加拿大多伦多大学数学系,博士后 (导师:V. Kumar Murty) 预印本 [ ] Meng Fai Lim, Structure of fine Selmer groups over Zp-extensions, arXiv:2111.08866[math.NT] [ ] Meng Fai Lim, Norm principle for K_{2n}-groups of number fields, arXiv:2109.06482[math.NT] [ ] Meng Fai Lim, On order of vanishing of characteristic elements, arXiv:2109.03985[math.NT] [ ] Meng Fai Lim, On the codescent of étale wild kernels in p-adic Lie extensions, arXiv:2101.06695[math.NT] 研究项目 1. 国家自然科学基金项目:外国青年学者研究基金 (No.1151101011) 项目名称:Iwasawa Theory of Selmer groups and fine Selmer groups, 2016.01-2017.12. 2. 国家自然科学基金项目:面上项目(No.11771164) 项目名称:非交换Iwasawa理论中的若干问题,2018.01-2021.12.

研究领域

代数数论, Iwasawa理论

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[25] Suman Ahmed and Meng Fai Lim, On the algebraic functional equation for the mixed signed Selmer group over multiple Zp-extensions, Proceedings of the American Mathematical Society 149 (2021), no. 11, 4541-4553. [24] Meng Fai Lim, Some remarks on Kida's formula when μ≠0, The Ramanujan Journal 55 (2021), Issue 3, 1127-1144. [23] Suman Ahmed and Meng Fai Lim, On the algebraic functional equation of the eigenspaces of mixed signed Selmer groups of elliptic curves with good reduction at primes above p, Acta Mathematica Sinica (English Series) 37 (2021), no. 2, 289-305. [22] Suman Ahmed and Meng Fai Lim, On the signed Selmer groups of congruent elliptic curves with semistable reduction at all primes above p. Acta Arithmetica 197 (2021), no. 4, 353-377. [21] Meng Fai Lim, On the control theorem for fine Selmer groups and the growth of fine Tate-Shafarevich groups in Zp-extensions, Documenta Mathematica 25 (2020), 2445-2471. [20] Pin-Chi Hung and Meng Fai Lim, On the growth of Mordell-Weil ranks in p-adic Lie extensions, Asian Journal of Mathematics 24 (2020) No. 4, 549-570. [19] Suman Ahmed and Meng Fai Lim, On the Euler characteristics of signed Selmer groups, Bulletin of the Australian Mathematical Society 101 (2020), no. 2, 238–246. [18] Meng Fai Lim, A note on asymptotic class number upper bounds in p-adic Lie extensions, Acta Mathematica Sinica (English Series) 35 (2019) Issue 9, 1481-1490. [17] Dingli Liang and Meng Fai Lim, On the Iwasawa asymptotic class number formula for Z_p^r\rtimes Z_p-extensions, Acta Arithmetica 189 (2019), no. 2, 191-208. [16] Meng Fai Lim and Ramdorai Sujatha, Fine Selmer groups of congruent Galois representations. Journal of Number Theory 187 (2018) 66-91. [15] Meng Fai Lim, M_H(G)-property and congruence of Galois representations. Journal of the Ramanujan Mathematical Society 33 (2018) No. 1, 37-74. [14] Meng Fai Lim, Comparing the π-primary submodules of the dual Selmer groups. Asian Journal of Mathematics, Vol. 21 (2017) No. 6, 1153-1182. [13] Meng Fai Lim, On the complete faithfulness of the p-free quotient modules of dual Selmer groups. Journal of the Ramanujan Mathematical Society 32 (2017), No. 3, 299-326. [12] Meng Fai Lim, Notes on the fine Selmer groups. Asian Journal of Mathematics 21 (2017) No. 2, 337-362. [11] Meng Fai Lim, Akashi series, characteristic elements and congruence of Galois representations. International Journal of Number Theory 12 (2016), No. 3, 593-613. [10] Meng Fai Lim and V. Kumar Murty, The growth of fine Selmer groups. Journal of the Ramanujan Mathematical Society 31 (2016), No. 1, 79-94. [9] Meng Fai Lim, On the pseudo-nullity of the dual fine Selmer groups. International Journal of Number Theory 11 (2015), No. 7, 2055-2063. [8] Meng Fai Lim and V. Kumar Murty, Growth of Selmer groups of CM Abelian varieties. Canadian Journal of Mathematics 67 (2015) No. 3, 654-666. [7] Meng Fai Lim, On completely faithful Selmer groups of elliptic curves and Hida deformations. Journal of Algebra 432 (2015) 72-90. [6] Meng Fai Lim, On the homology of Iwasawa cohomology groups. Journal of the Ramanujan Mathematical Society 30 (2015) No. 1, 51-65. [5] Meng Fai Lim, A remark on the M_H(G)-conjecture and Akashi series. International Journal of Number Theory 11 (2015) No. 1, 269-297. [4] Meng Fai Lim and V. Kumar Murty, The growth of the Selmer group of an elliptic curve with split multiplicative reduction. International Journal of Number Theory 10 (2014) No. 3, 675-687. [3] Meng Fai Lim and Romyar Sharifi, Nekovar duality over p-adic Lie extensions of global fields. Documenta Mathematica 18 (2013) 621-678. [2] Meng Fai Lim, Poitou-Tate duality over extensions of global fields. Journal of Number Theory 132 (2012) 2636-2672. [1] A Jon Berrick and Meng Fai Lim, Intertwining matrics for number fields: supplement to "Intertwiners and K-theory of commutative rings". J. Reine Angew. Math. 601 (2006) 159-162. 待发表论文 [ ] Debanjana Kundu and Meng Fai Lim, Control theorems for fine Selmer groups, accepted for publication in Journal de Théorie des Nombres de Bordeaux. [ ] Antonio Lei and Meng Fai Lim, On fine Selmer groups and signed Selmer groups of elliptic modular forms, accepted for publication in Bulletin of the Australian Mathematical Society. [ ] Antonio Lei and Meng Fai Lim, Mordell-Weil ranks and Tate-Shafarevich groups of elliptic curves with mixed-reduction type over cyclotomic extensions, accepted for publication in International Journal of Number Theory. [ ] Meng Fai Lim, On the growth of even K-groups of rings of integers in p-adic Lie extensions, accepted for publication in Israel Journal of Mathematics. [ ] Meng Fai Lim, On the cohomology of Kobayashi's plus/minus norm groups and applications, accepted for publication in Mathematical Proceedings of the Cambridge Philosophical Society. [ ] Meng Fai Lim, On the weak Leopoldt conjecture and coranks of Selmer groups of supersingular abelian varieties in p-adic Lie extensions, accepted for publication in Tokyo Journal of Mathematics. [ ] Antonio Lei and Meng Fai Lim, Akashi series and Euler characteristics of signed Selmer groups of elliptic curves with semistable reduction at primes above p, accepted for publication in Journal de Théorie des Nombres de Bordeaux. [ ] Meng Fai Lim and Ramdorai Sujatha, On the structure of fine Selmer groups and Selmer groups of CM elliptic curves, to appear in Proceeding of Ropar Conference, Ramanujan Mathematical Society Lecture Note Series.

推荐链接
down
wechat
bug