当前位置: X-MOL首页全球导师 国内导师 › 郑高峰

个人简介

现任华中师范大学数学与统计学学院教学副院长。曾作为成员获国家教学成果奖二等奖一项、湖北省教学成果奖一等奖两项,获华中师范大学第七届“桂苑名师”称号。 开设课程 数学分析、微分几何、微分流形、黎曼几何等 教育经历 1994.9-1998.6 华中师范大学数学系, 理学学士 1999.9-2002.6 中国科学院武汉物理与数学研究所,理学硕士 2002.8-2005.7 香港中文大学数学系,博士 工作经历 1998.7-1999.8 中国科学院武汉物理与数学研究所, 研究实习员 2005.8-2007.6 华中师范大学数学与统计学学院, 讲师 2007.7-2012.6 华中师范大学数学与统计学学院,副教授 2012.7至今 华中师范大学数学与统计学学院,教授 2009.1-2009.12 德国柏林自由大学数学研究所,洪堡学者 2012.1-2013.1 美国普渡大学数学系,访问学者 2017.1-2017.5 美国中佛罗里达大学数学系,访问学者 研究项目 1.国家自然科学基金面上项目:几何和物理中的非线性偏微分方程,编号11571131,2016-2019,50万元 2.国家自然科学基金面上项目:Alexandrov空间和度量测度空间中抛物型偏微分方程的研究,编号11171126,2012-2015,45万元 3.国家自然科学基金青年基金:非线性抛物方程解的奇性研究,编号10801058,17万元 4.国家自然科学基金数学天元基金:非线性抛物型偏微分方程解的正则性,编号10626023,3万元

研究领域

椭圆、抛物型偏微分方程、几何发展方程、几何测度论

主要从事偏微分方程、几何发展方程、几何测度论的研究

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1.Changyu Guo, Changlin Xiang, Gao-Feng Zheng, Xiao Zhong, Lp regularity theory for even order elliptic systems with antisymmetric first order potentials. Submitted. 2.Changyu Guo, Changlin Xiang, Gao-Feng Zheng, The Lamm-Riviere system I: Lp regularity theory. Submitted. 3.Chang-Jian Wang, Gao-Feng Zheng, Existence of the solutions to Sinh-Poisson equation with Henon term. Submitted. 4.Gui-Chun Jiang, Ruo-Yi Wang, Yu-Xuan Wang, Gao-Feng Zheng, Type II blow-up for a semilinear heat equation with a potential. Submitted. 5.Chang-Jian Wang, Gao-Feng Zheng, Convergence of Solutions to the Dirichlet problem of Allen-Cahn Equations to Mean Curvature Flow. Submitted. 6.Gui-Chun Jiang, Chang-Jian Wang, Gao-Feng Zheng, Convergence of Solutions of Some Allen-Cahn Equations to Brakke’s Mean Curvature Flow, Acta Appl Math 167(2020), 149-169. 7.Yuanwei Qi, Gao-Feng Zheng, Convergence of solutions of the weighted Allen-Cahn equations to Brakke type flow, Calc. Var. Partial Differential Equations. 57, 133 (2018). 8.Li, Peijun; Zheng, Gao-Feng; Zheng, Weiying Maxwell’s equations in an unbounded stucture. Math.Meth.Appl.Sci. 40 (2017), 573–588. 9.Guo, Yujin; Sowa, Artur; Zheng, Gao-Feng Existence and asymptotic behavior of solutions for nonlinear Maxwell equations arising in mesoscopic electromagnetism. Nonlinear Anal. Real World Appl. 20 (2014), 99–111. 10.Guo, Yujin; Zheng, Gao-Feng Classification and refined singularity of positive solutions for nonlinear Maxwell equations arising in mesoscopic electromagnetism. J. Funct. Anal. 266 (2014), no. 1, 177–198. 11.Cheng, Ting; Lan, Haipeng; Yang, Jinmei; Zheng, Gao-Feng On the behavior of blow-up solutions to a parabolic problem with critical exponent. J. Math. Anal. Appl. 402 (2013), no. 1, 255–260. 12.Zheng, Gao-Feng Some dichotomy results for the quenching problem. Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 7, 1491–1506. 13.Zheng, Gao-Feng A quasi-monotonicity formula and partial regularity for borderline solutions to a parabolic equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 27 (2010), no. 6, 1333–1360. 14.Zheng, Gao-Feng On quenching for some parabolic problems. Nonlinear Anal. 71 (2009), no. 7-8, 2416–2430. 15.Guo, Zhenhua; Jiang, Mina; Wang, Zhian; Zheng, Gao-Feng Global weak solutions to the Camassa-Holm equation. Discrete Contin. Dyn. Syst. 21 (2008), no. 3, 883–906. 16.Cheng, Ting; Zheng, Gao-Feng Some blow-up problems for a semilinear parabolic equation with a potential. J. Differential Equations 244 (2008), no. 4, 766–802. 17.Chou, Kai-Seng; Du, Shi-Zhong; Zheng, Gao-Feng On partial regularity of the borderline solution of semilinear parabolic problems. Calc. Var. Partial Differential Equations 30 (2007), no. 2, 251–275. 18.Cheng, Ting; Zheng, Gao-Feng On the blow-up of solutions for some fourth order parabolic equations. Nonlinear Anal. 66 (2007), no. 11, 2500–2511. 19.Zheng, Gao-Feng On finite-time blow-up for a nonlocal parabolic problem arising from shear bands in metals. Proc. Amer. Math. Soc. 135 (2007), no. 5, 1487–1494. 20.Li, Gongbao; Zheng, Gao-Feng The existence of positive solution to some asymptotically linear elliptic equations in exterior domains. Rev. Mat. Iberoam. 22 (2006), no. 2, 559–590. 21.Li, Gongbao; Zheng, Gaofeng The role of the domain topology on the number of positive solutions to asymptotically linear elliptic problems. Papers on analysis, 255–279, Rep. Univ. Jyväskylä Dep. Math. Stat., 83, Univ. Jyväskylä, Jyväskylä, 2001.

推荐链接
down
wechat
bug