当前位置: X-MOL首页全球导师 国内导师 › 刘磊

个人简介

开设课程 线性代数;微分几何; 教育经历 2009.09-2014.06,中国科学技术大学,博士; 2005.09-2009.06,安徽大学,学士; 工作经历 2020.11-今,华中师范大学数学与统计学学院,教授; 2018.11-2020.11,德国弗莱堡大学(University of Freiburg),博士后; 2015.06-2018.11,德国莱比锡马普数学所(Max Planck Institute for Mathematics in the Sciences, Leipzig),博士后; 2014.06-2015.06,清华大学,博士后;

研究领域

几何分析

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. Liu Lei, No neck for Dirac-harmonic maps, Calc. Var. Partial Differential Equations 52 (2015), no. 1-2, 1-15. 2. Liu Lei and Yin Hao, On the finite time blow-up of biharmonic map flow in dimension four, J. Elliptic Parabol. Equ. 1 (2015), 363-385. 3. Liu Lei and Yin Hao, Neck analysis for biharmonic maps, Math. Z. 283 (2016), no. 3-4, 807-834. 4. Jost Juergen, Liu Lei and Zhu Miaomiao, Blow-up analysis for approximate Dirac-harmonic maps in dimension 2 with applications to the Dirac-harmonic heat flow, Calc. Var. Partial Differential Equations 56 (2017), no. 4, Paper No. 108, 26 pp. 5. Li Yuxiang, Liu Lei and Wang Youde, Blowup behavior of harmonic maps with finite index, Calc. Var. Partial Differential Equations 56 (2017), no. 5, Paper No. 146, 16 pp. 6. Han Xiaoli, Jost Juergen, Liu Lei and Zhao Liang, Bubbling analysis for approximate Lorentzian harmonic maps from Riemann surfaces, Calc. Var. Partial Differential Equations 56 (2017), no. 6, Paper No. 175, 31 pp. 7. Jost Juergen, Liu Lei and Zhu Miaomiao, A global weak solution of the Dirac-harmonic map flow, Ann. Inst. H. Poincare Anal. Non Lineaire 34 (2017), no. 7, 1851-1882. 8. Jost Juergen, Liu Lei and Zhu Miaomiao, Energy identity for a class of approximate Dirac-harmonic maps from surfaces with boundary, Ann. Inst. H. Poincare Anal. Non Lineaire 36 (2019), no. 2, 365-387. 9. Li Jiayu and Liu Lei, Partial regularity of harmonic maps from a Riemannian manifold into a Lorentzian manifold. Pacific J. Math. 299 (2019), no. 1, 33-52. 10. Jost Juergen, Liu Lei and Zhu Miaomiao, The qualitative behavior at the free boundary for approximate harmonic maps from surfaces, Math. Ann. 374 (2019), no. 1-2, 133-177. 11. Jost, Juergen, Liu Lei and Zhu Miaomiao, Asymptotic analysis for Dirac-harmonic maps from degenerating spin surfaces and with bounded index. Calc. Var. Partial Differential Equations 58 (2019), no. 4, Paper No. 142, 33 pp. 12. Han Xiaoli, Jost Juergen, Liu Lei and Zhao Liang, Global existence of the harmonic map heat flow into Lorentzian manifolds, J. Math. Pures Appl. (9) 130 (2019), 130-156. 13. Jost Juergen, Liu Lei and Zhu Miaomiao, Bubbling analysis near the Dirichlet boundary for approximate harmonic maps from surfaces, Comm. Anal. Geom. 27 (2019), no. 3, 639-669. 14. Jost Juergen, Liu Lei and Zhu Miaomiao, Regularity of Dirac-harmonic maps with $\lambda$-curvature term in higher dimensions, Calc. Var. Partial Differential Equations 58 (2019), no. 6, Paper No. 187, 24 pp. 15. Han Xiaoli, Liu Lei and Zhao Liang, A global weak solution to the Lorentzian harmonic map flow, Sci. China Math. 63 (2020), no. 1, 155-166. 16. Liu Lei and Zhu Miaomiao, Boundary value problems for Dirac-harmonic maps and their heat flows, Vietnam J. Math. 49 (2021), no. 2, 577–596. Special Issue dedicated to Juergen Jost on the occasion of his 65th birthday. 17. Li Jiayu, Liu Lei, Zhu Chaona and Zhu Miaomiao, Energy identity and necklessness for $\alpha$-Dirac-harmonic maps into a sphere, Calc. Var. Partial Differential Equations 60 (2021), no. 4, Paper No. 146. 18. Liu Lei, Song Chong and Zhu Miaomiao, Harmonic maps with free boundary from degenerating bordered Riemann surfaces, arXiv:1904.01539, to appear in J. Geom. Anal. (2021) 19. Liu Lei and Wang Guofang, The blow-up analysis of an affine Toda system corresponding to superconformal minimal surfaces in $S^4$, J. Funct. Anal. 281 (2021), no. 9, Paper No. 109194, 43 pp 20. Jost Juergen, Liu Lei and Zhu Miaomiao, Asymptotic analysis and qualitative behavior at the free boundary for Sacks-Uhlenbeck $\alpha$-harmonic maps, to appear in Advances in Mathematics (2021) 21. Jost Juergen, Liu Lei and Zhu Miaomiao, A mixed elliptic-parabolic boundary value problem coupling a harmonic-like map with a nonlinear spinor, to appear in J. Reine Angew. Math. (Crelle's Journal) (2021). 待发表文章: 1. Jost Juergen, Liu Lei and Zhu Miaomiao, Geometric analysis of the action functional of the nonlinear supersymmetric sigma model, MPI MIS Preprint 77/2015. 2. Jost Juergen, Liu Lei and Zhu Miaomiao, Geometric analysis of a mixed elliptic-parabolic conformally invariant boundary value problem, MPI MIS Preprint 41/2018. 3. Liu Lei, Wang Guofang and Weng Liangjun, The relative isoperimetric inequality for minimal submanifolds in the Euclidean space, arXiv:2002.00914

推荐链接
down
wechat
bug