个人简介
教育经历
华中科技大学 水利水电工程专业博士;
华中理工大学 水力发电工程专业硕士;
河海大学 水文水资源专业学士;
专业经历
2007年-至今,华中科技大学水电与数字化工程学院 教授、博士生导师;
2017年-至今,华中科技大学-美国佐治亚理工学院国际水安全联合研究中心 主任;
2011年-至今,华中科技大学网络与计算中心 副主任;
2011年-至今,致公党武汉市委员会 副主委;
2017年-至今,武汉市政协常委、科教卫体专委会副主任;
主讲课程
工程水文学、生态水文学、分布式流域水文模型、大数据基础
主编高等学校水利学科专业规范核心课程教材《地理信息系统原理与应用》,2009年。
科研与获奖
主持和参与承担的科研课题包括国家科技支撑计划、国家重点研发计划、国家自然科学基金、教育部博士点专项基金、湖北省科技支撑计划、武汉市应用基础计划项目以及多项省部级企业项目。科研成果在三峡水利枢纽工程、南水北调中线工程、流域水资源优化配置、长江流域防洪调度、湖泊水环境综合治理中发挥了重要作用。在国内外重要学术期刊和国际会议上发表学术论文100余篇,作为第一发明人获授权国家发明专利6项,湖北省湖泊分类技术标准(DB42/T 1255-2017)1项,软件著作权4项。
大禹水利科学技术奖,一等奖,2018
教育部科技进步奖,一等奖,2000
湖南省科技进步奖,三等奖,2003
湖北省高等学校教学研究成果奖,二等奖,2005
华中科技大学“治学楷模”研究生导师奖,2012
华中科技大学“教学名师”,2019
湖北省三八红旗手,2009
研究领域
从事城市水资源与水环境评价及决策、大型水库群联合优化调度、大数据驱动的水安全方面的科研和教学工作
水利工程
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1]Kang Ling, Jiang Shangwen. Bivariate frequency analysis of hydrological drought using a nonstationary standardized streamflow index in the Yangtze river[J]. Journal of Hydrologic Engineering, 2018, 24(2): 05018031.
[2]Kang Ling, Jiang Shangwen, Hu Xiaoyong, et al. Evaluation of Return Period and Risk in Bivariate Non-Stationary Flood Frequency Analysis[J]. Water, 2019, 11(1): 79.
[3]Jing Zheng, Kang Ling, Yao Huaming. Simulation of Water Temperature by Using Urban Lake Temperature Model[J]. Journal of Hydraulic Engineering, 2017, 144(1): 06017025.
[4]Kang Ling, Zhou Liwei, Zhang Song. Parameter estimation of two improved nonlinear Muskingum models considering the lateral flow using a hybrid algorithm[J]. Water resources management, 2017, 31(14): 4449-4467.
[5]Kang Ling, Jing Zheng. Depth-Averaged Non-Hydrostatic Hydrodynamic Model Using a New Multithreading Parallel Computing Method[J]. Water, 2017, 9(3): 184.
[6] Zhang Song, Kang Ling, Zhou Liwei, et al. A new modified nonlinear Muskingum model and its parameter estimation using the adaptive genetic algorithm[J]. Hydrology Research, 2016, 48(1): 17-27.
[7]Kang Ling, Zhang Song. Application of the elitist-mutated PSO and an improved GSA to estimate parameters of linear and nonlinear Muskingum flood routing models[J]. PloS one, 2016, 11(1): e0147338.
[8]Kang Ling, Zhang Song, Ding Yi, et al. Extraction and preference ordering of multireservoir water supply rules in dry years[J]. Water, 2016, 8(1): 28.
[9]Li Changwen, Kang Ling. A new modified Tennant method with spatial-temporal variability[J]. Water resources management, 2014, 28(14): 4911-4926.
[10]Kang Ling, Guo Xiaoming. Depth-integrated, non-hydrostatic model using a new alternating direction implicit scheme[J]. Journal of Hydraulic Research, 2013, 51(4): 368-379.
[11]Kang Ling, Guo Xiaoming. Vertical two-dimensional non-hydrostatic pressure model with single layer[J]. Applied Mathematics and Mechanics, 2013, 34(6): 721-730.
[12]Guo Xiaoming, Kang Ling, Jiang Tiebing. A new depth-integrated non-hydrostatic model for free surface flows[J]. Science China Technological Sciences, 2013, 56(4): 824-830.
[13]Kang Ling, He Xiaocong. Risk analysis of rich–poor rainfall encounter in inter-basin water transfer projects based on Bayesian networks[J]. Water Science and Technology: Water Supply, 2011, 11(4): 451-459.
[14]Kang Ling, Wang Cheng, Jiang Tiebing. A new genetic simulated annealing algorithm for flood routing model[J]. Journal of Hydrodynamics, 2004, 16(2): 233-239.
[15]康玲,何小聪.南水北调中线降水丰枯遭遇风险分析[J].水科学进展,2011,22(01):44-50. Kang Ling, He Xiaocong. Risk analysis of synchronous-asynchronous encounter probability of rich-poor precipitation in the Middle Route of South-to-North Water[J]. Advances in Water Science,2011,22(01):44-50.
[16] 康玲,何小聪,熊其玲.基于贝叶斯网络理论的南水北调中线工程水源区与受水区降水丰枯遭遇风险分析[J].水利学报,2010,41(08):908-913. Kang Ling, He Xiaocong, Xiong Qiling. Risk analysis for precipitation rich-poor encounter between source area and receiving area of the Middle Route of South-to-North Water Transfer Project Based on Bayes-net theory[J]. Journal of Hydraulic Engineering, 2010, 41(8): 908-913.
[17]康玲,黄云燕,杨正祥,张晓敏.水库生态调度模型及其应用[J].水利学报,2010,41(02):134-141. Kang Ling, Huang,Yunyan, Yang Zhengxiang, et al. Reservoir ecological operation model and its application[J]. Journal of Hydraulic Engineering, 2010 41(2): 134-141.