个人简介
张超勇(Zhang Chaoyong,Professor),男,华中科技大学机械科学与工程学院教授,博士生导师。“制造装备数字化国家工程研究中心”、“数字制造与装备技术国家重点实验室”、“工业及制造系统工程系”成员。2007年获华中科技大学机械电子工程专业工学博士学位,研究方向为智能调度、制造执行系统(MES)、可持续制造和制造系统优化。
在科研方面,主持国家自然基金项目2项(第1),国家高技术863项目1项(第1),国家重点研究计划重点专项《智能制造基础共性和关键技术标准研究》1项。承担国家自然基金重点项目1项(校排名第2),中美基金委国际(地区)合作与交流项目1项(校排名第2),863目标导向类子项目1项(排名第2),国家自然科学基金项目2项(均排名第2);国家自然科学基金项目1项(排名第3)。
在发表论著方面,出版著作2部,在国内外期刊European Journal of Operational Research, IEEE Transactions on Systems Man Cybernetics-Systems, Expert Systems with Applications、Journal of Cleaner Production、Computers & Operations Research、International Journal of Production Research、机械工程学报、计算机集成制造系统等发表论文100多篇,其中以第一作者/通讯作者发表SCI论文50余篇,EI收录60多篇,申请发明专利12项,计算机软件著作权4项。
在科研成果方面,获得2008年度“湖北省优秀博士论文”,2009年度“全国百名优秀博士论文提名奖”;2008年度“教育部科技进步一等奖”,2010年度“中国机械工业科学技术一等奖”,2013年度“教育部自然科学一等奖”。
研究领域
智能调度
制造执行系统(MES)
可持续制造
制造系统优化
近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
1. Zhang CY, Zhou ZH, Tian GD, Xie Y, Lin WW, Huang ZT. Energy consumption modeling and prediction of the milling process: A multistage perspective. P I Mech Eng B-J Eng 2018;232(11):1973-1985.
2. Chaoyong Zhang*, Yunqing Rao and Peigen Li. An Effective Hybrid Genetic Algorithm for the Job Shop Scheduling Problem. International Journal of Advanced Manufacturing Technology, 2008.11, 39(9-10): 965-974
3. Chaoyong Zhang*, Peigen Li, Yunqing Rao, Zailin Guan. A Very Fast TS/SA Algorithm for the Job Shop Scheduling Problem. Computers & Operations Research, 2008.1, 35(1): 282-294
4. Chaoyong Zhang*, Peigen Li, Zailin Guan, Yunqing Rao. A Tabu Search Algorithm with a New Neighborhood Structure for the Job Shop Scheduling Problem. Computers & Operations Research, 2007, 34(11): 3229-3242
5. Ren YP, Zhang CY*, Zhao F, Xiao HJ, Tian GD. An asynchronous parallel disassembly planning based on genetic algorithm. European Journal of Operational Research 2018;269(2):647-660.
6. Ren YP, Zhang CY*, Zhao F, Tian GD, Lin WW, Meng LL, Li HL. Disassembly line balancing problem using interdependent weights-based multi-criteria decision making and 2-Optimal algorithm. Journal of Cleaner Production 2018;174:1475-1486.
7. Li DS, Zhang CY*, Tian GD, Shao XY, Li ZW. Multiobjective Program and Hybrid Imperialist Competitive Algorithm for the Mixed-Model Two-Sided Assembly Lines Subject to Multiple Constraints. Ieee Transactions on Systems Man Cybernetics-Systems 2018;48(1):119-129.
8. Ren YP, Yu DY, Zhang CY*, Tian GD, Meng LL, Zhou XQ. An improved gravitational search algorithm for profit-oriented partial disassembly line balancing problem. Int J Prod Res 2017;55(24):7302-7316.
9. Ren YP, Tian GD, Zhao F, Yu DY, Zhang CY*. Selective cooperative disassembly planning based on multi-objective discrete artificial bee colony algorithm. Engineering Applications of Artificial Intelligence 2017;64:415-431.
10. Lin WW, Yu DY, Zhang CY*, Zhang SQ, Tian YH, Liu SQ, Luo M. Multi-objective optimization of machining parameters in multi-pass turning operations for low-carbon manufacturing. P I Mech Eng B-J Eng 2017;231(13):2372-2383.
11. Jin LL, Zhang CY*, Shao XY, Yang XD. A study on the impact of periodic and event-driven rescheduling on a manufacturing system: An integrated process planning and scheduling case. P I Mech Eng B-J Eng 2017;231(3):490-504.
12. Yin Y, Zhou J, Zhang CY*, Chen DJ. Adaptive SLA mechanism for service sharing in virtual environments. Kybernetes 2016;45(7):1036-1051.
13. Wang F, Rao YQ, Zhang CY, Tang QH, Zhang LP. Estimation of Distribution Algorithm for Energy-Efficient Scheduling in Turning Processes. Sustainability 2016;8(8).
14. Tian GD, Zhou MC, Li PG, Zhang CY, Jia HF. Multiobjective Optimization Models for Locating Vehicle Inspection Stations Subject to Stochastic Demand, Varying Velocity and Regional Constraints. IEEE Transactions on Intelligent Transportation Systems 2016;17(7):1978-1987.
15. Li DS, Zhang CY*, Shao XY, Lin WW. A multi-objective TLBO algorithm for balancing two-sided assembly line with multiple constraints. J Intell Manuf 2016;27(4):725-739.
16. Jin LL, Zhang CY*, Shao XY, Yang XD, Tian GD. A multi-objective memetic algorithm for integrated process planning and scheduling. Int J Adv Manuf Tech 2016;85(5-8):1513-1528.
17. Jin LL, Zhang CY*, Shao XY, Tian GD. Mathematical modeling and a memetic algorithm for the integration of process planning and scheduling considering uncertain processing times. P I Mech Eng B-J Eng 2016;230(7):1272-1283.
18. Jin LL, Tang QH, Zhang CY*, Shao XY, Tian GD. More MILP models for integrated process planning and scheduling. Int J Prod Res 2016;54(14):4387-4402.
19. Yuan B, Zhang CY*, Shao XY, Jiang ZB. An effective hybrid honey bee mating optimization algorithm for balancing mixed-model two-sided assembly lines. Comput Oper Res 2015;53:32-41.
20. Yuan B, Zhang CY*, Shao XY. A late acceptance hill-climbing algorithm for balancing two-sided assembly lines with multiple constraints. J Intell Manuf 2015;26(1):159-168.
21. Lin WW, Yu DY, Zhang CY*, Liu X, Zhang SQ, Tian YH, Liu SQ, Xie ZP. A multi-objective teaching-learning-based optimization algorithm to scheduling in turning processes for minimizing makespan and carbon footprint. Journal of Cleaner Production 2015;101:337-347.
22. Lin WW, Yu DY, Wang S, Zhang CY*, Zhang SQ, Tian HY, Luo M, Liu SQ. Multi-objective teaching-learning-based optimization algorithm for reducing carbon emissions and operation time in turning operations. Engineering Optimization 2015;47(7):994-1007.
23. Jin LL, Zhang CY*, Shao XY. An effective hybrid honey bee mating optimization algorithm for integrated process planning and scheduling problems. Int J Adv Manuf Tech 2015;80(5-8):1253-1264.