当前位置: X-MOL首页全球导师 国内导师 › 檀文炳

个人简介

教育经历 2007.09–2013.07, 北京大学, 博士 2005.09–2007.07, 中国农业大学, 硕士 2001.09–2005.07, 海南大学, 学士 主要工作经历 2017.12–至今, 中国环境科学研究院, 副研究员 2013.07–2017.12, 中国环境科学研究院, 助理研究员 代表性专著 [1] 席北斗, 何小松, 檀文炳, 赵昕宇. 2019. 村镇有机废物堆肥及土壤利用, 化学工业出版社. 软件著作 [1] 余红, 檀文炳, 张颖, 党秋玲, 崔东宇. 城市生态环境保护战略规划评估系统V1.0. 登记号: 2020SR0354163 [2] 余红, 檀文炳, 张颖, 党秋玲, 崔东宇. 大气污染防治的GHGs减排效果评估系统V1.0. 登记号: 2020SR0351332 [3] 余红, 檀文炳, 张颖, 党秋玲, 崔东宇. 城市生态环境安全监测预警级管理系统V1.0. 登记号: 2020SR0352123 [4] 余红, 檀文炳, 张颖, 党秋玲, 崔东宇. 水污染防治的减排效果评估系统V1.0. 登记号: 2020SR0351256 [5] 李丹, 朱建超, 何小松, 党秋玲, 张慧, 李艳平, 赵昕宇, 檀文炳. 产城融合环境管理数据管理系统V1.0. 登记号: 2018SR036520 [6] 李丹, 朱建超, 何小松, 党秋玲, 张慧, 李艳平, 赵昕宇, 檀文炳. 产城融合环境管理决策分析系统V1.0. 登记号: 2018SR030118 [7] 李丹, 朱建超, 何小松, 党秋玲, 张慧, 李艳平, 赵昕宇, 檀文炳. 城市生态环境空间监测预警管理系统V1.0. 登记号: 2018SR635749 代表性研究项目 [1] 国家自然科学基金面上项目(41977030),“土壤不同团聚体组分原位固相有机质电子转移能力对增温的响应机制”,项目负责人 [2] 国家科技重大专项课题(2012ZX07203-003),“海河南系子牙河流域(河北段)水污染控制与水质改善集成技术与综合示范”,子课题负责人 [3] 国家自然科学基金青年项目(41501242),“土壤原位固相腐殖质的电子转移机制研究”,项目负责人 [4] 国家杰出青年科学基金项目(51325804),“城镇固体废弃物处置与资源化”,参加 [5] 国家科技重大专项课题(2018ZX07109),“京津冀地下水污染防治关键技术研究与工程示范项目”,参加 [6] 国家重点研发计划课题项目(2017YFA0605003),“全球变化对区域水土资源与环境质量的影响研究”,参加 [7] 国家自然科学基金青年项目(51808519),“木质素酚调控堆肥腐殖质电子转移能力机制研究”,参加 [8] 国家自然科学基金青年项目(51508540),“基于宏转录组的生物强化堆肥微生物胞外呼吸机理研究”,参加 [9] 国家自然科学基金面上项目(41176164),“应用生物标志物指标(IP25)重建末次冰期晚期以来白令海海水变化及其环境影响”,参加 [10] 国家自然科学基金面上项目(41072121),“大兴安岭森林草原区的炭屑记录对人类活动的指示意义”,参加 [11] 国家自然科学基金青年项目(41006042),“利用微生物标志物GDGT重建全新世渤海湾有机碳的来源及沉积通量”,参加 [12] 国家自然科学基金面上项目(40673017),“中国大陆东部植物稳定碳同位素以及现代植被中C4植物生物量贡献沿温度梯度带的变化”,参加

研究领域

环境地球化学

[1] 天然有机质的生物地球化学过程 [2] 污染物的环境地球化学行为 [3] 同位素与全球环境变化

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

[1] Tan W, Xi B, Zhao X, Dang Q. 2020. Emerging views on the overall process treatment of municipal domestic waste for the sustainable use of landfills in China. Engineering (https://doi.org/10.1016/j.eng.2020.06.003). [2] Tan W, Wang S, Liu N, Xi B. 2020. Tracing bacterial and fungal necromass dynamics of municipal sludge in landfill bioreactors using biomarker amino sugars. Science of the Total Environment 741, 140513. [3] Tan W, Liu N, Dang Q, Cui D, Xi B, Yu H. 2020. Insights into the removal efficiencies of aged polycyclic aromatic hydrocarbons in humic acids of different soil aggregate fractions by various oxidants. Environmental Pollution 264, 114678. [4] Tan W, Zhao X, Dang Q, Cui D, Xi B. 2020. Microbially reducible extent of solid-phase humic substances is governed by their physico-chemical protection in soils: Evidence from electrochemical measurements. Science of the Total Environment 708, 134683. [5] Tan W, Wang G, Zhao X, Dang Q, Li R, Xi B, Jiang J, Zhang H, Li D, Cui D, Jia Y. 2019. Molecular-weight-dependent redox cycling of humic substances of paddy soils over successive anoxic and oxic alternations. Land Degradation & Development 30, 1130–1144. [6] Tan W, Yuan Y, Zhao X, Dang Q, Yuan Y, Li R, Cui D, Xi B. 2019. Soil solid-phase organic matter-mediated microbial reduction of iron minerals increases with land use change sequence from fallow to paddy fields. Science of the Total Environment 676, 378–386. [7] Tan W, Wang L, Yu H, Zhang H, Zhang X, Jia Y, Li T, Dang Q, Cui D, Xi B. 2019. Accelerated microbial reduction of azo dye by using biochar from iron-rich-biomass pyrolysis. Materials 12, 1079. [8] Li R, Zhang Y, Yu H, Dang Q, Yu H, Xi B, Tan W*. 2019. Biouptake responses of trace metals to long-term irrigation with diverse wastewater in the wheat rhizosphere microenvironment. International Journal of Environmental Research and Public Health 16, 3218. (*Corresponding Author) [9] Tan W, Xi B, Wang G, He X, Gao R, Jiang J, Zhu B. 2019. Microbial-accessibility-dependent electron shuttling of in situ solid-phase organic matter in soils. Geoderma 338, 1–4. [10] Gao X#, Tan W#, Zhao Y, Wu J, Sun Q, Qi H, Xie X, Wei Z. 2019. Diversity in the mechanisms of humin formation during composting with different materials. Environmental Science & Technology 53, 3653–3662. (#Co-first Authors) [11] Zhao X#, Tan W#, Dang Q, Li R, Xi B. 2019. Enhanced biotic contributions to the dechlorination of pentachlorophenol by humus respiration from different compostable environments. Chemical Engineering Journal 361, 1565–1575. (#Co-first Authors) [12] Tan W, Yu H, Huang C, Li D, Zhang H, Jia Y, Wang G, Xi B. 2018. Discrepant responses of methane emissions to additions with different organic compound classes of rice straw in paddy soil. Science of the Total Environment 630, 141–145. [13] Xi B, Li R, Zhao X, Dang Q, Zhang D, Tan W*. 2018. Constraints and opportunities for the recycling of growing ferronickel slag in China. Resources, Conservation & Recycling 139, 15–16. (*Corresponding Author) [14] Tan W, Yu H, Huang C, Li D, Zhang H, Zhao X, Li R, Wang G, Zhang Y, He X, Xi B. 2018. Intercropping wheat and maize increases the uptake of phthalic acid esters by plant roots from soils. Journal of Hazardous Materials 359, 9–18. [15] Tan W, Zhang Y, Xi B, He X, Gao R, Huang C, Zhang H, Li D, Zhao X, Li M, Li L, Jiang J, Wang G. 2018. Discrepant responses of the electron transfer capacity of soil humic substances to irrigations with wastewaters from different sources. Science of the Total Environment 610–611, 333–341. [16] Tan W, Jia Y, Huang C, Zhang H, Li D, Zhao X, Wang G, Jiang J, Xi B. 2018. Increased suppression of methane production by humic substances in response to warming in anoxic environments. Journal of Environmental Management 206, 602–606. [17] Tan W, Li R, Yu H, Zhao X, Dang Q, Jiang J, Wang L, Xi B. 2018. Prominent conductor mechanism-induced electron transfer of biochar produced by pyrolysis of nickel-enriched biomass. Catalysts 8, 573. [18] Tan W, Xi B, Wang G, Jiang J, He X, Mao X, Gao R, Huang C, Zhang H, Li D, Jia Y, Yuan Y, Zhao X. 2017. Increased electron-accepting and decreased electron-donating capacities of soil humic substances in response to increasing temperature. Environmental Science & Technology 51, 3176–3186. [19] Tan W, Wang G, Huang C, Gao R, Xi B, Zhu B. 2017. Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem. Science of the Total Environment 598, 282–288. [20] Tan W, Zhang Y, He X, Xi B, Gao R, Mao X, Huang C, Zhang H, Li D, Liang Q, Cui D, Alshawabkeh AN. 2016. Distribution patterns of phthalic acid esters in soil particle-size fractions determine biouptake in soil-cereal crop systems. Scientific Reports 6, 31987. [21] Tan W, Zhou L, Liu K. 2013. Soil aggregate fraction-based 14C analysis and its application in the study of soil organic carbon turnover under forests of different ages. Chinese Science Bulletin 58, 1936–1947. [22] Tan W, Wang G, Han J, Liu M, Zhou L, Luo T, Cao Z, Chen S. 2009. δ13C and water-use efficiency indicated by δ13C of different plant functional groups on Changbai Mountains, Northeast China. Chinese Science Bulletin 54, 1759–1764.

推荐链接
down
wechat
bug