近期论文
查看导师新发文章
(温馨提示:请注意重名现象,建议点开原文通过作者单位确认)
[1] Hailin Li*. Time works well: Dynamic time warping based on time weighting for time series data mining. Information Sciences, 2021, 547: 592-608(SCI, JCR: Q1, 中科院升级版分区:TOP期刊)
[2] Hailin Li*, Zechen Liu. Multivariate time series clustering based on complex network. Pattern Recognition, 2021, 115: 107919 (SCI, JCR: Q1, 中科院升级版分区:TOP期刊)
[3] Hailin Li, Yenchun Jim Wu*, Shijie Zhang, Jinchuan Zou. Temporary rules of retail product sales time series based on the matrix profile. Journal of Retailing and Consumer Services , 2021,60:102431 (SSCI, JCR: Q2)
[4] Hailin Li*, Tian Du. Multivariate time-series clustering based on component relationship networks. Expert Systems with Applications, 2021, 173: 114649 (SCI, JCR: Q1, 中科院升级版分区:TOP期刊)
[5] Hailin Li*, Miao Wei. Fuzzy clustering based on feature weights for multivariate time series. Knowledge-based Systems, 2020, 197: 1-11(SCI, JCR: Q1, 中科院升级版分区:TOP期刊)
[6] Hailin Li*, Yenchun Jim Wu*, Yewang Chen. Time is money: Dynamic-model-based time series data-mining for correlation analysis of commodity sales. Journal of Computational and Applied Mathematics, 2020, 370: 1-20 (SCI, JCR: Q1, 中科院升级版分区:TOP期刊)
[7] 李海林*, 徐建宾, 林春培, 张振刚. 合作网络结构特征对创新绩效影响研究. 科学学研究, 2020,38(8):1528- 1538(国家自然科学基金委管理科学学部认定A类重要期刊)
[8] 李海林*, 林春培. 基于时间序列聚类的科研成果关键词分析研究. 科研管理, 2020,录用 (国家自然科学基金委管理科学学部认定A类重要期刊)
[9] 李海林*, 梁叶. 基于关键形态特征的多元时间序列降维方法. 控制与决策, 2020, 35(3): 629-636. (中国科协认定卓越期刊)
[10]李海林*, 邬先利. 基于时间序列聚类的主题发现与演化分析研究. 情报学报, 2019, 38(10): 1041-1050. (国家自然科学基金委管理科学学部认定A类重要期刊)
[11] Hailin Li*. Multivariate time series clustering based on common principal component analysis. Neurocomputing, 2019,349(7):239 - 247. (SCI, JCR: Q1 ,中科院升级版分区:TOP期刊)
[12]Chen, Yewang, Zhou, Lida, Bouguila, Nizar, Zhong, Bineng, Wu, Fei, Lei, Zhen, Du, Jixiang, Li, Hailin. Semi-Convex Hull Tree: Fast Nearest Neighbor Queries for Large Scale Data on GPUs. 2018 IEEE International Conference on Data Mining (ICDM), IEEE, 2018: 911--916. (CCF, B类会议)
[13]李海林*, 梁叶. 基于中心度的标签传播时间序列聚类方法. 控制与决策, 2018, 33(11): 1950-1958. (中国科协认定卓越期刊)
[14]李海林*, 魏苗. 基于近邻传播的限定簇数聚类方法研究. 电子科技大学学报, 2018, 47(05): 733-739. (EI)
[15]李海林*, 梁叶, 王少春. 时间序列数据挖掘中的动态时间弯曲研究综述. 控制与决策, 2018, 33(08): 1345-1353. (中国科协认定卓越期刊)
[16]李海林*, 万校基, 林春培. 基于关键词重要性和近邻传播聚类的主题分析研究. 情报学报, 2018, 37(5): 533-542. (国家自然科学基金委管理科学学部认定A类重要期刊)
[17] 李海林*, 王成, 邓晓懿. 基于分量属性近邻传播的多元时间序列数据聚类方法(new). 控制与决策, 2018,33(4):649-656. (中国科协认定卓越期刊)
[18]
李海林*, 魏苗. 自适应属性加权近邻传播聚类算法. 电子科技大学学报, 2018, 47(2):247-255. (EI)
[19] Li, Hailin*. Distance measure with improved lower bound for multivariate time series. Physica A: Statistical Mechanics and its Applications, 2017, 468: 622--637. (SCI, JCR: Q1, 中科院2区)
[20] 李海林*, 梁叶. 基于数值符号和形态特征的时间序列相似性度量方法. 控制与决策, 2017, 32(3): 451-458. (中国科协认定卓越期刊)
[21] Hailin Li*. Accurate and efficient classification based on common principal components analysis for multivariate time series. Neurocomputing, 2016, 171: 744--753.(SCI, JCR: Q1, 中科院升级版分区:TOP期刊)
[22] Hailin Li*. On-line and dynamic time warping for time series data mining. International Journal of Machine Learning and Cybernetics, 2015, 6(1): 145--153.(SCI, JCR:Q1, 中科院2区)
[23] Li, Hailin*. Piecewise aggregate representations and lower-bound distance functions for multivariate time series. Physica A: Statistical Mechanics and its Applications, 2015, 427: 10--25.(SCI, JCR:Q1, 中科院2区)
[24]李海林*. 基于变量相关性的多元时间序列特征表示. 控制与决策, 2015(03): 441-447. (中国科协认定卓越期刊)
[25]Hailin Li*. Asynchronism-based principal component analysis for time series data mining. Expert Systems With Applications, 2014, 41(6): 2842--2850. (SCI, JCR:Q1, 中科院TOP期刊)
[26] Hailin Li*, Libin Yang. Extensions and relationships of some existing lower-bound functions for dynamic time warping. Journal of Intelligent Information Systems, 2014, 43(1): 59--79. (SCI)
[27] Hailin Li*, Libin Yang. Time series visualization based on shape features. Knowledge-Based Systems, 2013, 41: 43--53. (SCI, JCR:Q1, 中科院升级版分区:TOP期刊)
[28]李海林*, 杨丽彬. 时间序列数据降维和特征表示方法. 控制与决策, 2013(11): 1718-1722. (中国科协认定卓越期刊)
[29]Hailin Li*, Libin Yang, Chonghui Guo. Improved piecewise vector quantized approximation based on normalized time subsequences. Measurement, 2013, 46(9): 3429--3439.(SCI, JCR:Q1, 中科院2区)
[30] 李海林*, 郭崇慧. 基于多维形态特征表示的时间序列相似性度量. 系统工程理论与实践, 2013(04): 1024-1034.(国家自然科学基金委管理科学学部认定A类重要期刊)
[31] Hailin Li*, Chonghui Guo, Wangren Qiu. Similarity measure based on piecewise linear approximation and derivative dynamic time warping for time series mining. Expert Systems with Applications , 2011, 38(12): 14732--14743. (SCI, JCR:Q1, 中科院TOP期刊)
[32]
李海林*, 郭崇慧, 邱望仁. 正态云模型相似度计算方法. 电子学报, 2011(11): 2561-2567.(EI)
[33]李海林*, 郭崇慧. 基于云模型的时间序列分段聚合近似方法. 控制与决策, 2011(10): 1525-1529. (中国科协认定卓越期刊)
[34]李海林*, 郭崇慧. 基于形态特征的时间序列符号聚合近似方法. 模式识别与人工智能, 2011(05): 665-672.(EI)
[35] Hailin Li*, Chonghui Guo. Piecewise cloud approximation for time series mining. Knowledge-Based Systems, 2011, 24(4): 492--500.(SCI, JCR:Q1, 中科院升级版分区:TOP期刊)