当前位置: X-MOL首页全球导师 国内导师 › 兰章

个人简介

教育背景及工作经历 2018年01月 破格晋升正教授 2016年09月-2017年09月 日本国立物质材料研究机构(NIMS) 访问学者 2016年07月 获博士生导师资格 2009年08月-至今 华侨大学 材料科学与工程学院 教学科研人员 2006年09月-2009年07月 华侨大学材料科学与工程学院 材料学专业 博士 2003年09月-2006年07月 华侨大学材料科学与工程学院 高分子专业 硕士 1999年09月-2003年07月 华侨大学材料科学与工程学院 应化专业 本科 承担项目: 8、福建省自然科学基金重点项目 7、福建省杰出青年科学基金:基于一维同轴异质结有序阵列的钙钛矿太阳电池研究。 6、国家自然科学基金面上项目:二氧化钛/量子点超薄膜/CsSnI3体异质结全无机高效固态太阳电池研究。 5、国家自然科学基金青年项目:量子点-染料共敏化二氧化钛纳米管阵列柔性太阳电池研究。 4、教育部科技重点项目:基于石墨烯高效电荷分离传输通道的光谱梯度响应量子点太阳能电池。 3、福建省自然科学基金项目:柔性固态染料敏化太阳电池的研究。 2、华侨大学省杰青培育项目:石墨烯增强电荷分离和传输的量子点敏化太阳能电池研究。 1、华侨大学科研启动经费:基于多羟基离子液体的准固态染料敏化太阳电池研究。 入选人才项目: 4、福建省“海纳百川”高端人才聚集计划——青年拔尖创新人才(华侨大学首位入选该计划)。 3、福建省高等学校新世纪优秀人才计划。 2、福建省高等学校杰出青年研究人才计划。 1、华侨大学优秀科技创新人才项目 ·获奖情况 泉州市先进工作者 第十四届福建省青年科技奖 泉州市科技奖一等奖 福建省自然科学二等奖 教育部高等学校优秀成果奖二等奖 福建省自然科学奖二等奖 第八届福建青年五四奖章 全国优秀博士学位论文提名奖 福建省优秀博士学位论文一等奖 卢嘉锡优秀研究生奖 ·发明专利 1. 兰章,吴季怀,一种制备钛矿太阳能电池的溶剂热处理方法, ZL201610507731.4 2. 兰章,吴季怀,一种同轴异质结钙钛矿太阳能电池的制备方法,ZL201510999666.7 3. 兰章,吴季怀,一种钙钛矿太阳能电池的制备方法,ZL201510999602.7 4. 兰章,吴季怀,一种量子点敏化太阳能电池对电极的制备方法,ZL201510999618.8 5. 兰章,吴季怀,一种量子点敏化太阳能电池光阳极的制备方法,ZL201510998902.3 6. 兰章,吴季怀,一种嵌入式大面积柔性敏化太阳电池及其制备方法,ZL201310239682.7 7. 兰章,阙兰芳,吴季怀,一种敏化太阳电池光阳极阻挡层的制备方法,ZL201310688353.0 8. 兰章,吴季怀,一种敏化太阳电池用固态电解质的制备方法,ZL201310279043.3 9. 兰章,吴季怀,一种氧化石墨基透明固态电解质的制备方法,ZL201310314479.1 10. 兰章,吴季怀,一种用于杂化太阳电池的类钙钛矿敏化光阳极的制备方法,ZL201310306559.2

研究领域

纳米材料的设计合成及复杂超结构的组装 钙钛矿及量子点太阳能电池的研究

·纳米材料的设计合成及复杂超结构的组装 ·量子点及钙钛矿太阳能电池

近期论文

查看导师新发文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

1. High efficiency and negligible hysteresis planar perovskite solar cells based on NiO nanocrystals modified TiO2 electron transport layers, Xuezhen Zhang, Weina Zhang, Tongyue Wu, Jihuai Wu, ZhangLan*, Solar Energy, 2019, 181, 293-300. 2. Efficient inverted planar perovskite solar cells based on inorganic hole-transport layers from nickel-containing organic sol, Zhang Weina, Jie Tang, Jihuai Wu, Zhang Lan*, Functional Materials Letters, 2019, 12, 1850088. 3. Low-temperature solution-processing high quality Nb-doped SnO2 nanocrystals- based electron transport layers for efficient planar perovskite solar cells, Jing Song, Xiaoxia Xu, Jihuai Wu, Zhang Lan*, Functional Materials Letters, 2019, 12, 1850091. 4. Interface engineering with NiO nanocrystals for highly efficient and stable planar perovskite solar cells, Weina Zhang, Xuezhen Zhang, Tongyue W, Weihai Sun, Jihuai Wu, Zhang Lan*, Electrochimica Acta 2019, 293, 211-219. 5. Highly efficient inverted planar perovskite solar cells from TiO2 nanoparticles modified interfaces between NiO hole transport layers and conductive glasses, Kaiming Deng, Jie Tang, Zhang Lan*, Journal of Materials Science: Materials in Electronics, 2019, 529-536. 6. Influence of Polymer Additives on the Efficiency and Stability of Ambient-Air Solution-Processed Planar Perovskite Solar Cells, Deng Wang, Lei Zhang, Kaimng Deng, Weina Zhang, Jing Song, Jiuai Wu, Zhang Lan*, Energy Technology, 2018, 2380-2386. 7. Dual interfacial modification engineering with p-type NiO nanocrystals for preparing efficient planar perovskite solar cells, Weina Zhang, Jing Song, Deng Wang, Kaiming Deng, Jihuai Wu, Lan Zhang*, Journal of Materials Chemistry. C, 2018, 6, 13034-13042. 8. Ligand-exchange TiO2 nanocrystals induced formation of high-quality electron transporting layers at low temperature for efficient planar perovskite solar cells, Xuezhen Zhang, Tongyue Wu, Xiaoxia Xu, Lei Zhang, Jie Tang, Xin He, Jihuai Wu, Zhang Lan*, Solar Energy Materials and Solar Cells, 2018, 178, 65-73 . 9. CdSexS1−x /CdS-cosensitized 3D TiO2 hierarchical nanostructures for efficient energy conversion, Zhang Lan*, Xin Chen, Sheng Zhang, Jihuai Wu, Journal of Solid State Electrochemistry, 2018, 22, 347-353. 10. High-performance inverted planar perovskite solar cells based on efficient hole-transporting layers from well-crystalline NiO nanocrystals, Jie Tang, Lei Zhang, Xuezhen Zhang, Xiaoxia Xu, Cong Yao*, Jihuai Wu, Zhang Lan*, Solar Energy, 2018, 161, 100-108. 11. Low-temperature solution-processed efficient electron-transporting layers based on BF4--capped TiO2 nanorods for high-performance planar perovskite solar cells, Zhang Lan*, Xiaoxia Xu, Xuezhen Zhang, Jie Tang, Lei Zhang, Xin He, Jihuai Wu, Journal of Materials Chemistry C, 2018, 2, 334-341. 12. Counter electrodes in dye-sensitized solar cells, Jihuai Wu*, Zhang Lan, Jianming Lin, Miaoliang Huang, Yunfang Huang, Leqing Fan, Genggeng Luo, Yu Lin, Yimin Xie, Yuelin Wei, Chemical Society Reviews, 2017, 19, 5975-6023. 13. CH3NH3Br Additive for Enhanced Photovoltaic Performance and Air Stability of Planar Perovskite Solar Cells prepared by Two-Step Dipping Method, Lei Zhang*, Xuezhen Zhang, Xiaoxia Xu, Jie Tang, Jihuai Wu, Zhang Lan*, Energy Technology, 2017, 10, 1887-1894. 14. Efficient planar perovskite solar cells based on high-quality perovskite films with smooth surface and large crystal grains fabricated in ambient air conditions, Lei Zhang, Xuezhen Zhang, Yang Yu, Xiaoxia Xu, Jie Tang, Xin He, Jihuai Wu, Zhang Lan*, Solar Energy, 2017, 155, 942-950. 15. CdS sensitized TiO2 nanorod arrays based solar cells prepared with polymer-assisted layer-by-layer adsorption and reaction method, Xin Chen, Zhang Lan*, Sheng Zhang, Jihuai Wu, Jingfang Zhang, Optics Communications, 2017, 395, 111-116. 16. An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers, Zhang Lan*, Wanxia Wu, Sheng Zhang,Lanfang Que, Jihuai Wu, Journal of Solid State Electrochemistry, 2016, 20, 2643-2650. 17. Preparation of high-efficiency CdS quantum-dot-sensitized solar cells based on ordered TiO2 nanotube arrays, Zhang Lan*, Wanxia Wu, Sheng Zhang, Lanfang Que, Jihuai Wu, Ceramics International, 2016, 42, 8058-8065. 18. High-performance Pt-NiO nanosheet-based counter electrodes for dye-sensitized solar cells, Zhang Lan*, Lanfang Que, Wanxia Wu, Jihuai Wu, Journal of Solid State Electrochemistry, 2016, 20, 759-766. 19. Preparation of novel TiO2 quantum dot blocking layers at conductive glass/TiO2 interfaces for efficient CdS quantum dot sensitized solar cells, Sheng Zhang, Zhang Lan*, Jihuai Wu, Xin Chen, Caiyan Zhang, Journal of Alloys and Compounds, 2016, 656, 253-258. 20. Preparation of Pt-NiO/Co3O4 nanocompounds based counter electrodes from Pt-Ni/Co alloys for high efficient dye-sensitized solar cells, Zhang Lan*, Lanfang Que, Wanxia Wu, Jihuai Wu, Journal of Alloys and Compouds, 2015, 646, 80-85. 21. Electrolytes in Dye-Sensitized Solar Cells, Jihuai Wu*, Zhang Lan, Jianming Lin, Miaoliang Huang, Yunfang Huang, Leqing Fan, Genggeng Luo, Chemical Reviews, 2015, 115, 2136-2173. 22. Titanium dioxide quantum dots: Magic materials for high performance underlayers inserted into dye-sensitized solar cells, Lanfang Que, Zhang Lan*, Wanxia Wu, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Journal of Power Sources, 2014, 268, 670-676. 23. Room temperature polymerization of poly (3,4-ethylenedioxythiophene) as transparent counter electrodes for dye-sensitized solar cells, Suwen Gao, Zhang Lan*, Wanxia Wu, Lanfang Que, Jihuai Wu*, Jianming Lin, Polymers for Advanced Technologies, 2014, 25, 1560-1564. 24. High-efficiency dye-sensitized solar cells based on ultra-long single crystalline titanium dioxide nanowires, Lanfang Que, Zhang Lan*, Wanxia Wu, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Journal of Power Sources, 2014, 266, 440-447. 25. TiCl4 assisted formation of nano-TiO2 secondary structure in photoactive electrodes for high efficiency dye-sensitized solar cells, Zhang Lan*, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Science China-Chemistry, 2014, 57, 888-894. 26. Template-free synthesis of polyaniline nanobelts as a catalytic counter electrode in dye-sensitized solar cells, Zhang Lan*, Jihuai Wu*, Suwen Gao, Jianming Lin, Miaoliang Huang, Xiaomin Chen, Polymers for Advanced Technologies, 2014, 25, 343-346. 27. Influences of solvents on morphology, light absorbing ability and photovoltaic performance of Sb2S3-sensitized TiO2 photoanodes by chemical bath deposition method, Zhang Lan*, Xiaoping Zhang, Shi Jie Kang, Jihuai Wu*, Suwen Gao, Xiaomin Chen, Journal of Materials Science-Materials in Electronics, 2014, 25, 673-677. 28. Efficient Mn-doped CdS quantum dot sensitized solar cells based on SnO2 microsphere photoelectrodes, Lu Liu, Miaoliang Huang*, Zhang Lan*, Jihuai Wu, Guanglu Shang, Guijing Liu, Jianming Lin, Journal of Materials Science-Materials in Electronics, 2014, 25, 754-759. 29. A novel photoelectrochemical solar cell with high efficiency in converting ultraviolet light to electricity, Zhang Lan*, Xiaoping Zhang, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Huang Zhao, Electrochimica Acta, 2013, 108, 337-342. 30. Enhancing photovoltaic performance of photoelectrochemical solar cells with nano-sized ultra thin Sb2S3-sensitized layers in photoactive electrodes, Xiaoping Zhang, Zhang Lan*, Jihuai Wu*, Jianming Lin, Leqing Fan, Journal of Materials Science-Materials in Electronics, 2013, 24, 1970- 1975. 31. Enhancing photovoltaic performance of dye-sensitized solar cells by using thermally decomposed mirror-like Pt-counter electrodes, Zhang Lan*, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Xiaoxi Wang, Thin Solid Films, 2012, 522, 425-429. 32. Controllable hydrothermal synthesis of nanocrystal TiO2 particles and their use in dye-sensitized solar cells, Zhang Lan*, Jihuai Wu*, JianMing Lin, MiaoLiang Huang, Science China-Chemistry, 2012, 55, 1308-1313. 33. Bi-functional TiO2 cemented Ag grid under layer for enhancing the photovoltaic performance of a large-area dye-sensitized solar cell, Zhang Lan, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Electrochimica Acta, 2012, 62, 313-318. 34. A novel gel electrolyte for quasi-solid-state dye-sensitized solar cells, Zhang Lan*, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Electrochimica Acta, 2012, 60, 17-22. 35. Morphology controllable fabrication of Pt counter electrodes for highly efficient dye-sensitized solar cells, Zhang Lan*, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Journal of Materials Chemistry, 2012, 22, 3948-3954. 36. Quasi-solid- state dye-sensitized solar cells containing P (MMA-co-AN)-based polymeric gel electrolyte, Zhang Lan, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Polymers for Advanced Technologies, 2011, 22, 1812-1815. 37. Oligomer Ethylene Glycol Based Electrolytes for Dye-Sensitized Solar Cell, Zhang Lan, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Journal of Applied Polymer Science, 2011, 120, 2786-2789. 38. A facile way to fabricate highly efficient photoelectrodes with chemical sintered scattering layers for dye-sensitized solar cells, Zhang Lan*, Jihuai Wu*, Jianming Lin, Miaoliang Huang, Journal of Materials Chemistry, 2011, 21, 15552-15557. 39. Template-free synthesis of closed-microporous hybrid and its application in quasi-solid-state dye-sensitized solar cells, Zhang Lan, Jihuai Wu*, Sancun Hao, Jianming Lin, Miaoliang Huang, Yunfang Huang, Energy and Environmental Science, 2009, 2, 524-528. 40. An all-solid-state dye-sensitized solar cell-based poly(N-alkyl-4-vinyl-pyridine iodide) electrolyte with efficiency of 5.64%, Jihuai Wu*, Sanchun Hao, Zhang Lan, Jianming Lin, Miaoliang Huang, Yunfang Huang, Pingjiang Li, Shu Yin, Tsugio Satot, Journal of the American Chemical Society, 2008, 130, 11568-11569. 41. A novel thermosetting gel electrolyte for stable quasi-solid-state dye-sensitized solar cells, Jihuai Wu*, Zhang Lan, Jianming Lin, Miaoliang Huang, Sancun Hao, Tsugio Sato, Shu Yin, Advanced Materials, 2007, 19, 4006-4011. 42. A thermoplastic gel electrolyte for stable quasi-solid-state dye-sensitized solar cells, Jihuai Wu*, Sancun Hao, Zhang Lan, Jianming Lin, Miaoliang Huang, Yunfang Huang, Leqin Fang, Shu Yin, Tsugio Sato, Advanced Functional Materials, 2007, 17, 2645-2652.

推荐链接
down
wechat
bug