当前位置: X-MOL首页全球导师 国内导师 › 王本驰

个人简介

2019年回国后,以青年拔尖人才引进方式加盟华南师范大学脑科学与康复医学研究院,继续从事认知领域注意和记忆的相关研究。近几年,作为第一作者和通讯作者在Journal of Experimental Psychology: Human Perception and Performance;Journal of Experimental Psychology: Learning, Memory, and Cognition;Journal of Cognitive Neuroscience等认知和实验心理学顶级期刊发表论文17篇,其中2018年发表在JEPHPP和APP的论文均被评为心理学领域的ESI高被引论文(截止2020年9月)。基于这两篇文章的主要发现,荷兰皇家科学院院士,欧洲认知心理学会主席Jan Theeuwes教授拿到了ERC advanced基金(欧洲最高基金,资助金额250万欧, 心理学每年资助3-4人,需8-9名世界顶级学者的同行评议)。此外,担任十余个专业学术期刊的审稿人。 工作经历 2019.11-至今,华南师范大学,脑科学与康复医学研究院,副研究员。 教育经历 2015.09-2019.09,Vrije Universiteit Amsterdam,Cognitive Psychology,PhD 2012.09-2015.06,浙江师范大学,心理学系,基础心理学,硕士 2005.09-2009.07,中北大学,数学系,信息与计算科学专业,学士 主持课题 1、华南师范大学启动经费,50万,主持; 2、广东省联合基金青年项目(批准号:2019A1515110581):视觉工作记忆的动态存储,2020.01—2022.12,10万,主持; 3、国家自然科学基金会青年项目(批准号:32000738):注意选择中的统计学习,2021.01—2023.12,24万,主持。 In our daily life, we always encounter a complex visual world with an enormous amount of perceptual information. It is well known that we cannot process all the information at one time, but instead we need to direct limited resources towards a subset of relevant items that is closely linked to our current behaviour (i.e., visual selection).Image that you are working in your office writing a science paper. The goal is to finish this paper and to stay focused on the work at hand. This is a form of goal-driven selection involving top-down control. Imagine that someone knocks on your door; this will distract you and your attention is automatically oriented towards the door. This would be a form of stimulus-driven selection involving bottom-up control. If your colleague keeps knocking on the door just for fun, you probably will be able to supress the distracting and continue to work again at your paper. This is a form of history-driven selection involving lingering biases due to previous selection episodes.From the example described above, we can conceptualize visual selection as being controlled in three ways (Awh, Belopolsky, & Theeuwes, 2012; Theeuwes, 2018, 2019): top-down control, bottom-up control, and selection-history. We are mainly interested in how those factors interact with each other, to shape the selection priority map, driving current selection. Visual working memory (VWM) is commonly treated as an online memory system which not only provides temporary storage, but also manipulates the information necessary for ongoing complex cognitive tasks, such as learning and reasoning. The standard view of VWM has been that the storage capacity of VWM is limited, and is assumed to hold up to ~4 items at a time (Cowan, 2001).Given by that this memory system with limited capacity does play an important role in many cognitive tasks, it is necessary to understand how this system works, how to improve its capacity, how to manipulate the memory representation of items stored in memory, and how it is related to our Long-term memory system.

研究领域

I) Visual selection, distractor suppression, and spatial attention II) Visual working memory and visual attention

近期论文

查看导师最新文章 (温馨提示:请注意重名现象,建议点开原文通过作者单位确认)

13. Kong, S., Li, X., Wang, B.*, & Theeuwes, J. (2020). Spatial suppression due to statistical learning tracks the estimated spatial probability. Attention Perception and Psychophysics. 12. Wang, B.*, & Theeuwes, J. (2020). Salience determines attentional orienting in visual selection. Journal of Experimental psychology: Human Perception and Performance. 11. Wang, B.* & Theeuwes, J. (2020). Implicit attentional biases in a changing environment. Acta Psychologica. 206, 103064. doi: http://doi.org/10.1016/j.actpsy.2020.103064 10. Kong, S., Li, X., Wang, B.*, & Theeuwes, J. (2020). Proactively location-based suppression elicited by statistical learning. Plos one, 15(6), e0233544. doi: http://doi.org/10.1371/journal.pone.0233544 9. Wang, B.*, van Driel, J., Ort, E., & Theeuwes, J. (2019). Anticipatory distractor suppression elicited by statistical regularities in visual search. Journal of Cognitive Neuroscience, 31 (10), 1535–1548. https://doi.org/10.1162/jocn_a_01433 8. Wang, B.*, Samara, I, & Theeuwes, J. (2019). Statistical regularities bias overt attention. Attention Perception and Psychophysics, 81 (6), 1813–1821. https://doi.org/10.3758/s13414-019-01708-5 7. Failing, M#, Wang, B.*#, & Theeuwes, J. (2019). Spatial suppression due to statistical regularities is driven by distractor suppression not by target activation. Attention Perception and Psychophysics, 81 (5), 1405–1414. https://doi.org/10.3758/s13414-019-01704-9 (#shared first authorship) 6. Failing, M.#, Feldmann-Wüstefeld, T.#, Wang, B., Olivers, C., & Theeuwes, J. (2019). Statistical regularities induce spatial as well as feature-specific suppression. Journal of Experimental Psychology: Human Perception and Performance, 45 (10), 1291–1303. https://doi.org/10.1037/xhp0000660 (#shared first authorship). 5. Wang, B.* & Theeuwes, J. (2018c). Statistical regularities modulate attentional capture independent of search strategy. Attention Perception and Psychophysics, 80 (7), 1763–1774. https://doi.org/10.3758/s13414-018-1562-3 4. Wang, B.* & Theeuwes, J. (2018b). How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Attention Perception and Psychophysics, 80 (4), 860–870. https://doi.org/10.3758/s13414-018-1493-z (Highly cited paper in Psychology [Top 1%]) 3. Wang, B.* & Theeuwes, J. (2018a). Statistical regularities modulate attentional capture. Journal of Experimental Psychology: Human Perception and Performance, 44 (1), 13-17. doi: 10.1037/xhp0000472 (Highly cited paper in Psychology [Top 1%]) 2. Wang, B., Yan, C., Klein, R., & Wang, Z.* (2018). Inhibition of return revisited: Localized inhibition on top of a pervasive bias. Psychonomic Bulletin and Review, 25 (5), 1861–1867. https://doi.org/10.3758/s13423-017-1410-9 1. Wang, B., Hilchey, M. D., Cao, X., & Wang, Z.* (2014). The spatial distribution of inhibition of return revisited: No difference found between manual and saccadic responses. Neuroscience Letters, 578, 128–132. doi:10.1016/j.neulet.2014.06.050 6. Li, X., Xiong, Z., Theeuwes, J., & Wang, B.*. (2020) Visual memory benefits from prolonged encoding time regardless of stimulus type. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi: http://doi.org/10.1037/xlm0000847 5. Wang, B.*, Theeuwes, J., & Olivers, C.N.L. (2019). Momentary, offset-triggered dual-task interference in visual working memory. Journal of Cognition. 2 (1): 38, 1-12. doi: https://doi.org/10.5334/joc.84 4. Wang, B.*, Theeuwes, J., & Olivers, C.N.L. (2018). When shorter delays lead to worse memories: Task disruption makes visual working memory temporarily vulnerable to test interference. Journal of Experimental Psychology: Learning, Memory, and Cognition. 44 (5), 722–733. https://doi.org/10.1037/xlm0000468 3. Wang, B.*, Yan, C., Wang, Z., Olivers, C.N.L., &Theeuwes, J. (2017). Adverse orienting effects on visual working memory encoding and maintenance. Psychonomic Bulletin and Review, 24 (4), 1261–1267. doi:10.3758/s13423-016-1205-4 2. Wang, B., Cao, X., Theeuwes, J., Olivers, C.N.L., & Wang, Z.* (2017). Separate capacities for storing different features in visual working memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43 (2), 226-236. doi:10.1037/xlm0000295 1. Wang, B., Cao, X., Theeuwes, J., Olivers, C.N.L., & Wang, Z.* (2016). Location-based effects underlie feature conjunction benefits in visual working memory. Journal of Vision, 16 (11): 12, 1-13. doi:10.1167/16.11.12

推荐链接
down
wechat
bug